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Abstract

What is the best way to match nodes in two graphs?
This graph alignment problem generalizes graph
isomorphism and arises in applications from social
network analysis to bioinformatics. Existing solu-
tions usually assume that auxiliary information on
known matches or node or edge attributes are avail-
able, or utilize arbitrary graph features. Such meth-
ods fare poorly in the pure form of the problem, in
which only graph structures are given.

We present GRASP, a method that treats this prob-
lem as a special case of the problem of finding
a mapping between functions on graphs, extend-
ing the shape-analysis concept of functional maps
from the continuous to the discrete case. GRASP
uses functions that capture a graph’s structural
characteristics, derived from eigenvectors of the
graph’s Laplacian matrix; it establishes a generic
correspondence between eigenvector-based signa-
ture functions first, and then exploits it to derive
a correspondence among nodes. Our experimental
study, featuring noise levels higher than anything
used in previous studies, shows that GRASP out-
performs state-of-the-art methods for graph align-
ment across noise levels and graph types.

1 Introduction

Graphs model relationships between entities in several do-
mains, e.g., social networks, protein interaction networks,
email communication or chemical molecules. The structure
of such graphs captures rich information on how people are
connected, how molecules function, or how proteins interact.

At the same time, the expressive nature of graphs also im-
plies complexity, which renders some fundamental problems
hard. For instance, the graph isomorphism problem, which
is to determine whether two graphs share the same struc-
ture is neither known to be polynomially solvable nor NP-
complete, and has been used to define the GI complexity
class [Kobler ef al., 2012]. Problems that generalize graph
isomorphism occur frequently in the field of graph analyt-
ics. One of those is the NP-complete subgraph isomorphism
problem; another is graph alignment, which aims to find the

(b) Alignment by GRASP
(top) and REGAL (bottom).

(a) Karate club; Red edges re-
moved.

Figure 1: With a few removed edges, REGAL [Heimann et al.,
2018], alignment method based on local features, fails to correctly
align the distorted Karate club graph to the original; GRASP iden-
tifies most of nodes (correctly aligned nodes in green).

best (exact or inexact) matching among the nodes of a pair
of graphs; a solution to this problem is sine qua non in tasks
such as identifying users in different social networks [Kazemi
et al., 2015], matching objects in images by establishing fea-
ture correspondences [Schellewald and Schnérr, 2005], and
comprehending protein response in the body [Klau, 2009].

In case additional background information is available,
such as node and edge attributes in the two graphs to be
aligned, or existing valid seed matches, then the problem is
solvable via supervised methods [Liu et al., 2016; Chu et al.,
2019]. However, in case only graph structures are given, then
the problem of aligning two graphs by matching structures, is
at least as hard as graph isomorphism even in its approximate
version [Abdulrahim, 1998].

Existing approaches to the graph alignment problem are
oriented toward using a few heuristic graph features, such as
landmarks, in order to detect a good alignment [Heimann et
al., 20181, exploiting additional information such as node at-
tributes [Zhang and Tong, 2016] or bipartite networks [Koutra
et al., 2013], or optimizing objectives based only on local
connections among nodes [Feizi er al., 2019; Nassar et al.,
2018; Liao et al., 2009]. On the other hand, the spectra
of Laplacian matrices have been successfully employed to
devise a similarity measure among graphs [Tsitsulin et al.,
2018]. Laplacian spectra capture important multiscale prop-
erties, such as local-scale ego-nets and global-scale commu-
nities. Previous approaches rooted in spectral characteristics
decompose large matrices expressing all alignments among
edges in two graphs [Feizi et al., 2019; Nassar et al., 2018;
Liao et al., 2009] and formulate the solution as finding the
leading eigenvector of such matrices. These approaches dis-



regard most eigenvectors and consider only local edge varia-
tions. To our knowledge, the spectral properties of Laplacian
matrices have not yet been utilized to any significant extent
for an end-to-end graph alignment method.

We propose GRASP, short for GRaph Alignment through
SPectral Signatures, a principled approach towards detect-
ing a good alignment among graphs, grounded on their spec-
tral characteristics, i.e., eigenvalues and eigenvectors of their
Laplacian matrices [Chung and Graham, 1997]. We transfer
the methodology of matching among shapes based on corre-
sponding functions [Ovsjanikov ef al., 2012] to the domain
of graphs: we first extract a mapping of node-evaluated func-
tions grounded on the graph’s heat kernel, and then apply this
mapping to the matching on nodes. Figure 1 shows an exam-
ple alignment of the Karate club with a deteriorated version
obtained by removing some edges; GRASP correctly aligns
most of the nodes, while REGAL [Heimann et al., 2018]
based on local descriptors fails to do so.

Our contributions are as follows.

e We devise GRASP, a graph alignment algorithm based on
spectral characteristics to capture multiscale interactions.

e We demonstrate the superior performance of GRASP over
state-of-the-art graph alignment methods.

e We show that our method achieves better accuracy with
similar run time.

2 Related Work

We discuss related work in two main categories: restricted
alignment, which requires ground-truth mapping or other ad-
ditional information, and unrestricted alignment, which re-
quires neither supervision nor additional information. Table
1 gathers together previous works’ characteristics.

2.1 Restricted Alignment

Supervised methods exploit pre-aligned pairs of seed nodes
to construct a first alignment. Percolation graph match-
ing (PGM) [Kazemi et al., 2015; Yartseva and Grossglauser,
2013] propagates ground-truth alignments across the network
using percolation theory.Representation learning approaches,
such as IONE [Liu et al., 2016], PALE [Man et al., 20161,
and DeepLink [Zhou et al., 2018], learn a low-dimensional
embedding of the graph nodes and map the node embeddings
of one graph to another. A similar method aligns multiple
networks at once [Chu et al., 2019]. Active network align-
ment [Malmi ef al., 2017] applies active learning to elicit do-
main expertise for node alignments. Supervised methods may
achieve good performance, but rely on the ample availability
of prior knowledge in the form of seeds

Assisted methods utilize auxiliary information or structural
constraints. BigAlign [Koutra et al., 2013] focuses on the
special cas of bipartite graphs; however, most graphs are
not bipartite. FINAL [Zhang and Tong, 2016] aligns similar
nodes in terms of topology and attributes GSANA [Yasar and
Catalyiirek, 2018] employs a set of seed nodes, which can be
given by the user or precomputed, to calculate pairwise dis-
tances used as 2D-coordinates for matching. Another vari-
ant matches weigrhed matrices using their spectra [Umeyama,
1988]; unfortunately, that is inapplicable to the unweighted

Qe»'e' & s N
& & N 4 SIS
Method N * Q¥ & Oi&z?o >
Supervised X X 4 X X X
BigAlign v X v X X X
FINAL 4 b 4 b 4 b 4 b 4 X
IsoRank ['4 X ['4 v 4 X
LREA v v v X X X
REGAL v X v v v X
GRASP v v v v v v

Table 1: Related work in terms of present (¢') and absent (X) prop-
erties. Supervised methods [Liu et al., 2016; Chu et al., 2019;
Man et al., 2016; Zhou et al., 2018] require aligned nodes as in-
put. Spectral methods [Nassar et al., 2018] use spectral proper-
ties of alignment matrices. FINAL [Zhang and Tong, 2016] does
not work on plain graph structures as it requires node attributes.
REGAL [Heimann et al., 2018] and IsoRank [Liao ef al., 2009;
Singh et al., 2008] are flexible in allowing different algorithms for
alignment (e.g. bipartite matching, nearest neighbors). GRASP,
REGAL, and IsoRank can benefit from an offline precomputation
of graph representations (results in Figure 7). GRASP explicitly
captures multiscale properties through the heat kernel.

case. Overall, such methods cannot handle cases where there
is no additional information other than graph structure.

2.2 Unrestricted Alignment

[Add a description for CONE-Align]
Integer-programming methods. Klau [Klau, 2009] presents
a Lagrangian relaxation for the integer programming problem
posed by network alignment; the resulting algorithm is poly-
nomial, yet still impracticable for large networks.

Embedding-based methods. REGAL [Heimann er al.,
2018] constructs node embeddings based on the connectivity
structure and node attributes, and uses the similarity between
these features for node alignment; we classify REGAL as an
unrestricted method since it can work without attributes.

Matrix decomposition methods. IsoRank [Singh er al.,
2008] aligns multiple protein-protein interaction networks
aiming to maximize the overall quality across all input net-
works; it constructs an eigenvalue problem for every pair of
input networks and extracts a global alignment across a set of
networks by a k-partite matching; it uses structural properties
(PageRank), but also relies on a similarity measure between
nodes which in a biology-specific case builds on the similarity
of the proteins; it is improved with greedy approaches [Kol-
lias et al., 2013]. Another improvement on IsoRank, Iso-
RankN [Liao et al., 20091, performs spectral clustering on
the induced graph of pairwise alignment scores; as it is based
on spectral methods, IsoRankN is claimed to be both error-
tolerant and computationally efficient. EigenAlign [Feizi et
al., 2019] formulates the problem as a Quadratic Assign-
ment Problem that considers both matches and mismatches
and solves it by spectral decomposition of matrices. Build-
ing thereupon, Low-Rank EigenAlign [Nassar er al., 2018]
solves a maximum weight bipartite matching problem on a
low-rank version of a node-similarity matrix, hence requires
memory linear in the size of the graphs. However, EigenAlign
variants use the first eigenvector of a joint adjacency matrix



between the two graphs to be aligned, rather than the eigen-
vectors of graph Laplacians, which provides richer informa-
tion. A projected power iteration version of EigenAlign, Pro-
jected Power Alignments (PPA) [Onaran and Villar, 2017],
improves recovery rates.

Belief propagation methods. NetAlign [Bayati et al., 2013]
solves a sparse variant of network alignment by a message-
passing algorithm.

2.3 Shape Matching

Our work is inspired by shape matching methods that employ
spectral properties [Litany et al., 2017; Ovsjanikov et al.,
2012; Kovnatsky et al., 2013]. Functional maps [Ovsjanikov
et al., 2012] generalize the matching of points to the match-
ing of corresponding functions among shapes, by revealing
a common decomposition of such functions using the eigen-
vectors of the Laplace-Beltrami operator; the graph equiva-
lent of that operator is a graph’s Laplacian matrix. Exten-
sions of this methods match non-isometric shapes by align-
ing their Laplace-Beltrami operators’ eigenbases [Kovnatsky
et al., 2013], and match a part of a shape to another full
shape [Rodola et al., 2017]; such partial matching can be
done fully in the spectral domain [Litany et al., 2017] without
requiring spatially modeling the part of a shape.

2.4 Spectral Methods

Graph spectra are well studied in theoretical computer sci-
ence [Chung and Graham, 1997] and facilitate practical
problem-solving in graph analysis, image partitioning, graph
search, and machine learning [Belkin and Niyogi, 2006;
Belabbas and Wolfe, 2009; McSherry, 2001; Shi and Malik,
2000]. The eigenvectors of the Laplacian of a point cloud
graph converge to the eigenfunctions of the Laplace-Beltrami
operator on the underlying Riemannian manifold, which jus-
tifies transferring Laplace-Beltrami operator-based methods
from computational geometry to similar problems in graph
analysis. NetLSD [Tsitsulin ef al., 2018] uses this correspon-
dence to represent graphs via Laplacian spectral signatures
so as to detect similar graphs in a multi-scale fashion. Graph
convolutional networks also utilize graph spectra [Defferrard
et al., 2016] to learn filters on the eigenvectors. Still, cal-
culating a graph’s spectrum is computationally challenging;
recent work proposes an approximation via spectral moments
estimated through random walks [Cohen-Steiner et al., 2018].
Our work employs graph spectra, yet can rely on fast methods
for diagonally dominant matrices [Koutis et al., 2015].

3 Background and Problem

Graph Alignment. Consider two undirected graphs, G; =
(V1, Eq) and G2 = (Va, E5), where V, are node sets, E, C
V. x V, are edges. Without loss of generality, we assume that
[Vi| = |V2| = n. A graph’s adjacency matrix A € {0,1}"*"
is a binary matrix where A;; = 1 if there is an edge between
nodes ¢ and j and A;; = 0 otherwise.

Definition 1. Given two graphs G1 = (V1,E1) and Gy =
(Va, Es), a graph alignment R : Vi — Vs is an injective
Junction that maps nodes of G to nodes of Ga.

The graph alignment problem is to find such a function,
which, expressed as a permutation matrix P, minimizes the
difference ||[PA; PT — As||%. In case of isomorphic graphs,
there exists a P such that PA; P = A, ie., aligns the two
graphs exactly. We are interested in the general, unrestricted
problem case, in which there are no additional constraints on
node attributes or matches known in advance. The problem is
hard and not known to be in NP. [Cook, 1971].

We may express graph alignment in terms of a ground truth
function 7 : V3 — V4 that returns the correct alignment be-
tween the nodes V7 in (G; and the nodes V5 in G5. In the
case of isomorphic graphs, this ground truth function 7 is a
bijection that admits an inverse mapping 7% : Vo — V.
The composition of the indicator function ¢; : V3 — {0,1}
with 771, §; 0771 : V5 — {0, 1} expresses the complete iso-
morphism among the two graphs, returning 1 if node u € V5
maps to node ¢ € Vi, 0 otherwise. By generalization, the
composition g; = f; o 7! maps functions in G to functions
in G for any family of real-valued functions fi, ..., fg, fi :
Vi — Rand g1,...,94,9; : Vo — R that associate a real
value to each node in Gy and G5. This transformation among
functions is called a functional representation of the mapping
7. In effect, finding an alignment among the nodes of two
graphs corresponds to finding an alignment among functions
on those nodes. We use such functional alignments as a short-
cut to effective node alignments. To get there, we extend the
concept of a functional map [Ovsjanikov et al., 2012] from
the continuous case in shape analysis to the discrete case of
graph structures.

Functional maps. The operator T : (V; x R)—(V2 x R)
maps functions f on the nodes in Gy to functions g on the
nodes in G, i.e. T(f)=for '=g. This operator is linear
in the function space, i.e., T=(c1 f1+caf2) = (c1f1+cafe)o
Tl =cfior 4 eafaormt = aiTr(f1) + e2TrF(f2).
In addition, let ¢q, ..., ¢, and 1, ..., 1, denote orthogonal
bases for the space of functions on G1’s nodes, V; x R, and
that on G2’s nodes, V5 x R, respectively. Since those func-
tions produce n-dimensional vectors, we can represent them
as linear combinations of their basis vectors, f = 2?21 a;p;
and g = 3=, b;1;. Then, by the linearity of Tr,

Tx(f)=TF (Z (lz‘¢i> = Z a;Tr(¢i)= Z a; Z Ccijthi= Z bty
o1 =1 =

i=1 i=1

where Tx(¢;) = >0, cijip;. It follows that each coef-

ficient b; is the dot-product >, a;c;; between the coef-
ficients (a1, ...., a,) of functions in G; and the coefficients
(¢1j, ..., cnj) of the operator Tx. In conclusion, in order to
align real-valued functions on the nodes of two graphs, we
need to find a mapping matrix C € R"*™ of coefficients
among those functions. Note that such a mapping matrix C'
maps functions from G to G, even when the ground-truth
mapping 7 is unknown. In a nutshell, GRASP obtains such a
mapping matrix C' for a well-chosen function and applies that
C' to mapping the indicator function § from G to G, thereby
constructing a node alignment. The main question we need to
answer is what orthogonal basis and functions we should use
to construct our mapping matrix C'. The next section answers
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(b) Their first 3 eigenvectors
Figure 2: We removed red edges from the green graph to obtain the

blue graph. The eigenvalues (a) interlace; the respective eigenvec-
tors ¢1, g2, ¢z for green and 11, 12, 13 for blue highlight common
structures. The eigenvectors do not perfecly correspond, calling for
the base alignment method of Section 4.5.

(a) Two graphs spectra

this question and builds on that answer to devise a solution
based on spectral graph theory and linear algebra.

4 Solution

Here, we choose an orthonormal basis and a function, which
are, in our judgement, appropriate for node alignment pur-
poses, and define the complete pipeline of our solution.

4.1 Choice of basis: Normalized Laplacian

As a basis for representing functions as linear combinations
of base functions, we use the eigenvectors of the graph’s nor-
malized Laplacian, i.e., the matrix £ = [ — D*%AD*%,
where D a diagonal degree matrix of node degrees D;; =
> j=1Aij and A is the graph adjacency matrix; its eigen-
decomposition is £ = ®AP T, where A is a diagonal ma-
trix of eigenvalues, {1, ..., \,}, i.e., the graph’s spectrum,
which encodes structural information about communities, de-
gree distribution, and diameter, and ® is a matrix of eigenvec-
tors, &p = [Pp1¢2 . . . ¢n]. The eigenvectors form an orthogo-
nal basis, which we use a standard basis. We use ¢ to indicate
the eigenvectors of the Laplacian of graph G4, and ¢ to indi-
cate those of G5.

We consider this basis to be stuitable, since the eigenvec-
tors of the normalized Laplacian converge to the eigenfunc-
tions of the Laplace-Berltrami operator [Belkin and Niyogi,
2006], which measures the smoothness of continuous multi-
dimensional surfaces; thus, our method extends differential
geometry results to graphs.

4.2 Choice of function: Heat Kernel

The choice of functions f; : Vi — R, g; : Vo — R, is
critical for our method. A poor choice would be detrimental
to the results. A function of choice should have the following
desirable properties:

Expressiveness. The function should express the graph’s
structure. For instance, a constant function returning the same
value for all nodes would not yield a meaningful alignment.

Permutation-invariance. The function should not depend
on the node index #; the indicator function does not have this
property.

Robustness. A function is robust if it is insensitive to small
perturbations in the graph. A similar property is the multi-
scale property, which implies a function capturing both local
and global characteristics (e.g., both edges and communities).

A function fulfilling these requirements is the time-
parameterized heat kernel, which has been used for similar
purposes in [Tsitsulin et al., 2018]:

Hy=®e M0T =% e"Ng;0] (1)
j=1

where Hy[;;) measures the flow of heat from node ¢ to node j
at time ¢, as it diffuses from each node’s neighborhood to the
whole graph. We build our model functions over a sequence
of time steps ¢ using the diagonal of the heat kernel, which
measures the heat flowing back to each node at time .

The heat kernel enjoys the aforementioned properties [Tsit-
sulin et al, 2018]: it expresses graph structure in a
permutation-invariant manner, and is robust to small changes,
as the value in the diagonal can be thought as the likelihood
a node is reached by a diffusion process within time ¢. In the
beginning of the diffusion, Equation 1 emphasises large A,
which correspond to local edge and ego-net properties. As
time progresses, smaller eigenvalues get emphasized, reflect-
ing global graph properties, such as communities. We recall
that ¢5 is the Fiedler vector used to detect communities in
spectral clustering.

We build our corresponding functions f;, g;, from the heat
kernel at different time steps ¢, as linear combinations of
the graph’s Laplacian orthogonal eigenvectors ¢, ..., ¢n.
Specifically, let ' € R"¥9, F = [f1,..., f,] be the ma-
trix containing the diagonals of the heat kernel of G, HtG ',
over ¢ time' steps, f; = Y7, e "N ¢; © ¢, where © de-
notes the element-wise vector product. Likewise, the matrix
G € R"™,G = [g1,..., gq contains the diagonals of HtGQ,
the heat kernel of G5. While the g columns of F' and G con-
tain the same time-dependent heat-kernel-diagonal functions
evaluated on the nodes of two different graphs, their n rows
(i.e., nodes) are not aligned. We need to obtain such a node
alignment.

4.3 Mapping matrix

We approximate each function f; using only the first k
eigenvectors, as done, by analogy, with eigenvectors of the
Laplace-Beltrami operator on shapes [Belkin and Niyogi,
2006], and thereby calculate the corresponding function ma-
trices F' and G. F and G can be thought as coefficient matri-
ces used to produce linear combinations, F' Td and GTU, of
the Laplacian eigenvectors of G; and G, respectively. With
a slight abuse of notation, we denote with ® and U the first k
eigenvectors, hence F'T ® and G T W are in R7*. In the pro-
jection of the functions on the first k eigenvectors, we would
like the corresponding functions to be equal up to a coeffi-
cient matrix C'€ R¥**, In the case of isomorphic graphs, it
holds that F'T® = GTW(C, where C is a diagonal mapping
matrix, hence:
diag(g; )| [en o fy
: = @)
dlag(qu\I/) Ckk @qu
'n our experiments we select ¢ = 100 values evenly spaced on
the linear scale in the range [0.1, 50].



Matrix C'is diagonal in the case of isomorphic graphs and
deviates from a diagonal form as graphs diverge from perfect
isomorphism; for the sake of simplicity, we assume a diago-
nal C, and obtain the diagonal entries that minimize the Lo-
norm difference ||-||3 between the left and rights side of Equa-
tion 2 using the ordinary least squares method, as in [Kov-
natsky et al., 2013]. In Section 4.5 we delve into the general
case of non-isomorphic graphs.

4.4 Node-to-node correspondence

We consider the delta function §;(-) as corresponding func-
tion; these functions yield an n x n identity matrix. We ex-
press such a function as a vector of coefficients, since the
vector of §; is the ith row of the heat kernel at ¢ = 0:

0 =HGy =Y bijo;

Jj=1

The computation for delta functions on G follows equiv-
alently using W in place of ®. We may match the coefficient
vectors of these corresponding indicator functions, as, ideally,
for two matching nodes v; € V; and v’; € V5, the coefficients
of §; and ¢; for ® and V¥ should be identical. In particular,
the coefficients expressing §; as a linear combination of the
first k eigenvectors are ¢;1, ..., ¢;x. Weset @ and CU T in
R* %7 ag coefficient matrices of the delta functions, aligned
by C. Rows correspond to the first £ Laplacian eigenvectors,
while columns stand for graph nodes, rather than for time
steps of heat diffusion. We need to match coefficient vectors,
i.e., columns of @7 and CU T, to each other. This problem
amounts to a linear assignment problem; we apply an off-the-
shelf algorithm therefore, such as nearest neighbor search
or Jonker-Volgenant (JV) [Jonker and Volgenant, 1987], to
obtain an one-to-one matching between the columns of ®
and C'UT, and hence an alignment of nodes in G| and GS.
We emphasize the flexibility of GRASP, as we may employ
a different matching algorithm and a different transformation
on the coefficient matrix, while preserving the overall frame-
work.

4.5 Base Alignment

We have hitherto assumed that the graphs to be aligned, G
and G, are isomorphic, hence their eigenvectors correspond
to each other with possible sign changes and an orthogo-
nal and diagonal mapping matrix C exists. However, if the
graphs are not isomorphic, then their eigenvectors diverge
and the diagonal matrix C', which we enforce, cannot cap-
ture their relationship well. Figure 2 highlights this issue: at
a high level the eigenvectors underline common structures,
but they differ at the node level. In this case, we need to align
the two eigenvector bases before we consider aligning corre-
sponding vectors and, eventually, nodes. We express this base
alignment [Kovnatsky et al., 2013] in terms of an alignment
matrix M.

Alignment matrix. We align the eigenvectors ¥ by a rota-
tion matrix M so as transform V¥ into ®: ¥ = WM. Since

LV = VA, finding ¥ is equivalent to the solution of the fol-
lowing quadratic minimization problem which penalizes ele-

ments outside of the diagonal, in order to preserve orthogo-
nality of the basis:

min off(U " LoW) s.t. UTW =T

where 0off(-) denotes the sum of squared off-diagonal el-
ements. Moreover, since the eigenvectors are orthonor-
mal, VT = [ and for Go’s graph Laplacian eigenvec-
tors Ao, \IJT£2\I] = \I’T\I’AQ = A,, and MT\I/T,CQ\I’M =
M T Ay M. Putting the above together, our diagonalizing term
is:

min off( MT Ay M) st. MTM =T

As we are minimizing over orthogonal matrices we can
equivalently express the objective above as a minimization
over orthogonal matrices of size n x n, S(n,n):

min  off(M T Ay M)
MeS(n,n)

Coupling. The correspondence 7 : G; — G so that ¢; ~

T o 1) translates to
min |FT® - GToM|%

where F' and G contain each graphs’s corresponding func-
tions. We combine the minimization terms for diagonaliza-
tion and coupling, to get the following minimization problem,
with regularization factor p%:

min  Off(M "AoM) + p||FT® - GTUM|Z  (3)
MeS(n,n)
Given that the eigenvectors of isomorphic graphs match
each other with sign changes, we initialize M as a diagonal
matrix with:

a2 LA IET = G < [F7 i+ G|
' 1 =1 otherwise

Equation 3 leads to a manifold optimization problem,
which we solve using the trust-region methods [Absil et al.,
2007].

Scalability. We avoid computing all eigenvectors n X n, ex-
ploiting the fact that we only need the first £ eigenvectors
for calculating C' (see Section 4.3). So we only align the
first k eigenvectors of W to the first k£ eigenvectors of ®, i.e
d=U=UMwith® = [¢1,..., ¢ and ¥ = [y, ..., s
The optimization problem in Equation (3) then becomes

. TA TE TI A2
Mgél(rli,k) off( M ' AeM) 4+ u||F'® -G YM|z @)
with Ay = diag(A1, ..., \g). B
After obtaining M, we use the eigenvectors in ® and the
aligned eigenvectors ¥ = UM in the next step for the final
alignment of nodes. In effect, our approach effectively trades
off the problem of graph alignment with a proxy problem of
manifold optimization, which we solve with reasonable accu-
racy and scalability.

%11 = 0.132 in our experiments



4.6 Our algorithm: GRASP

Putting all together, GRASP consists of five steps. The algo-
rithm pseudocode is described in the supplementary material.

Steps 1: Compute eigenvectors. In the first step, calculate
the Laplacians L1, Lo of the two graphs G; and Gs. Then
compute the eigenvectors @, ¥ and eigenvalues A1, A5 by the
eigendecomposition £; = ®A;® T and Ly = VAL, .
Step 2: Compute corresponding functions. In the second
step, calculate the matrices of corresponding functions F' =
[f1,-.-, fq) and G = [g1,...,9,] as diagonals of the heat
kernel at time steps [t1,. .., t,] with f; = Y27 e "% ¢; ©
¢; and g; equivalently using .
Step 3: Base alignment. After the corresponding functions
are calculated, obtain the base alignment matrix M by mini-
mizing equation 3. Then align the first & columns of VU, de-
noted by W to the corresponding first k columns ® of ® as
U =WM.
Step 4: Calculate mapping matrix. Under the assumption
that C' is a diagonal matrix, calculate its diagonal elements
C11, - - -, Ckk Dy solving the least squares problem:
. - . 2
diag(g) ¥)] [en T f

min : N : (®)]

[e11,mChr] T di T= : A_ll
iag(g, V)| |ckk T f ],

We then set C' = diag(ci1, - - -, Ckk)-

Step 5: Node alignment. Since the corresponding functions
should have the same coefficients on both graphs, obtain the
coefficients of the indicator functions for all nodes as ® " and
CVT. In order to get the final alignment of nodes, align the

columns of T and C'U' T with a linear assignment algorithm.

4.7 Complexity analysis

The computation of the first k& eigenvectors of the Lapla-
cian matrix (Step 1), used as a base and to compute the
corresponding functions, takes O(k max{|E1|, | E2|}) by fast
methods for diagonally dominant matrices [Koutis et al.,
2015]. The base alignment (Step 3) needs O(k?) to solve the
orthogonality constraint through trust-region methods. The
least-squares method (Step 4) runs in O(qk). The final
matching step runs in O(n3) by the JV algorithm. Overall,
the O(n?) time factor is dominant. In practice, as we note in
Section 5.4, GRASP runs as fast as REGAL [Heimann et al.,
2018] on several datasets with precomputed eigendecompo-
sition.

4.8 Connection to Differential Geometry

Our work rests on the theory on Riemannian manifolds [Gal-
lot et al., 1990] that studies continuous multidimensional sur-
faces, and builds on the analogy between a discrete graph’s
Laplacian £ and the continuous Laplace-Beltrami opera-
tor [Tsitsulin et al., 2018]. Another notable discretization of
the Laplace-Beltrami operator used in shape analysis is the
cotangent scheme [Meyer ef al., 2003], which includes infor-
mation about the area of shape tiles and the angles among
them. As such information is inapplicable in the case of

graphs, we settled for the Laplacian matrix, considering a
graph as a discrete form of a latent multidimensional mani-
fold devoid of area and angle information.

S Experiments

We run the experiments on a 40-core Intel Xeon CPU E5-
2687Wv3, 3.10GHz machine with 368Gb RAM on python
3.6.9. 3 We used pymanopt [Townsend et al., 2016] for solv-
ing the base alignment problem in Eq. (3).

Experimental setup. We perform our experiments on three
different real-world networks, which properties can be found
in Table XXX in the Supplementary Material. Following the
setup described in [Heimann er al., 20181, we generate per-
mutated versions of these networks by applying a permuta-
tion matrix P to the original adjacency matrix A4, thus
Aperm = PAOM»QPT. We inject noise by randomly deleting
edges with probability p, which ranges from 0.05 to 0.25, the
latter value being higher than anything used in previous stud-
ies [Heimann et al., 2018; Nassar et al., 2018]. For each p,
we generate 5 permutated graphs and average our accuracy
results over them. We measure the alignment quality in terms
of average accuracy computed as the ratio of correctly aligned
nodes over the total number of nodes. Although we focus on
alignment quality, we show in Section 5.4 how our method
fares in terms of scalability.

—e—JV, with base alignment
- - JV, no base alignment

NN, with base alignment
NN, no base alignment
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Figure 3: Accuracy of nearest neighbor and JV matching algorithms
with and without aligning the eigenbases.

Baselines. We compare against the following state-of-the art
baselines for unrestriced graph alignment.

e REGAL [Heimann et al., 2018]: A method based on em-
bedding vectors utilizing local structural features. In its
original formulation, REGAL does not perform one-to-one
alignment but allows several nodes to be matched to the
same node. As the matching process is simply the task of
matching the obtained embedding vectors, we modify it to
fit our definition of graph alignment by applying a linear
assignment algorithm to the embeddings.

e Low Rank EigenAlign (LREA) [Nassar et al., 2018]: A
spectral method which solves a one-to-one matching by op-
timizing a bipartite matching problem based on the mini-
mization of edge mismatches. The method outperforms

3 Anonimized code link: https://github.com/juhuhu/GrASp
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Figure 4: Accuracy compared to REGAL and LREA

all previous spectral methods like IsoRank [Singh et al.,
2008]; hence, it is used as the reference competitor.

We eschew a comparison with IsoRank [Singh ez al., 2008;
Liao et al., 2009] and other methods for the alignment of
biological networks [?; El-Kebir et al., 2015], since RE-
GAL [Heimann et al., 2018] and LREA [Nassar et al., 2018]
significantly outperform those methods.

Parameter tuning. [TODO]
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Figure 5: Accuracy compared to REGAL [Heimann et al., 2018] on
three real datasets.

5.1 Justifying algorithmic choices

The purpose of the experiment in Figure 3 is twofold: (i)
showing how base alignment described in Section 4.5 ef-
fectively helps graph alignment in non-isomorphic graphs,
and (ii) evaluating the choice of the assignment algorithm for
node-to-node correspondence described in Section 4.4. Both
base alignment and JV linear assignment bring a substantial
advantage over the more rudimentary counterparts. The be-
havior of GRASP is consistent across datasets and algorith-
mic choices. In the following experiments, and unless oth-
erwise stated, we settle on the variant of GRASP equipped
with base alignment.

5.2 Comparison to previous methods

We compare GRASP with REGAL [Heimann e al., 2018]
and LREA [Nassar er al., 2018] in terms of accuracy. As RE-
GAL allows for different assignment algorithms for node-to-
node correspondence, we equip REGAL with JV to supply

the same advantage of GRASP. We perform sanity experi-
ments to assess whether REGAL with JV outperforms over
nearest neighbors. The results, not reported for sake of read-
ability, confirm our hypothesis. The results in Figure 4 shows
that GRASP outperforms previous methods by a large mar-
gin in Arenas and Facebook graph, achieving 76% accuracy
in Arenas and 59% in Facebook with 5% noise. GRASP’s
behaviour is consistent despite high levels of noise. More-
over, on the complex CA-AstroPH collaboration graph that
contains a large number of nodes with a large degree, our
method fares as good as local methods, such as REGAL. The
accuracy of GRASP increases more steeply as noise falls.

5.3 Real world networks

In addition to our experiments with permuted graphs and arti-
ficial noise, we perform experiments where we match one real
world network to another unedited real world network. Mul-
tiMagna is a collection of graphs consisting of a base yeast
network and five variations with different sets of edges. We
match these five variations to the original, while measuring
alignment accuracy, as Figure 5 presents. HighSchool and
Voles are two proximity networks, given as evolving graphs.
We match the latest version of these graphs with versions at
time steps with 80%, 85%, 90%, and 99% of all edges. Fig-
ure 5 shows the results. Overall, we observe that the advan-
tage of GRASP over REGAL that we observed with syn-
thetic noise transfers well to real-world alignment problems.

5.4 Efficiency

Last, we compare the efficiency of our method on different
datasets. Our method, as well as REGAL, allows precompu-
tation of the representations prior to alignment. In our case,
step 1-3 in Section 4.6 are independent of the alignment and
can hence be performed in an offline phase. Figure 6 the time
in seconds to compute the alignments when the correspond-
ing functions and the eigendecompositions are not accounted
for. GRASP outperforms REGAL and LREA in the largest
CA-AstroPh and performs, in the other cases as well as the
optimized low-rank method of LREA. Figure 7 shows the
time without precomputing the eigendecomposition and the
corresponding functions. In this case, REGAL does not ex-
hibit any substantial advantage even in the smaller Arenas and
Facebook graphs. GRASP attains more accurate results with
a negligible increase in time. As performance was similar on
real-world networks, we omit the corresponding time results.
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Figure 6: Alignment time including precomputation.
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6 Conclusion

We proposed GRASP, a novel graph alignment method that
matches graphs utilizing the eigenvectors of their Laplacian
matrices. To solve this problem, we first establish a func-
tional correspondence among the pre-aligned eigenvectors of
the two graphs, extending the shape-analysis concept of func-
tional maps, and then extract a linear assignment among ma-
trix columns. The functional correspondences we employ
capture multi-scale graph properties, and lead to a method-
ology that attains superior alignment quality over the state-
of-the-art methods for graph alignment across noise levels
and real-world graph types, with noise levels higher than any-
thing used in previous studies. In the future, we plan to ex-
tend our method to partial correspondences among graphs,
and towards flexible definitions of subgraph isomorphism, in-
cluding the case of matching graphs with unequal numbers of
nodes.
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