
ActUp: Analyzing and Consolidating tSNE & UMAP

Andrew Draganov1 , Jakob Rødsgaard Jørgensen1 , Katrine Scheel Nellemann1 , Davide
Mottin1 , Ira Assent1 , Tyrus Berry2 , Cigdem Aslay1

1Aarhus University
2George Mason University

{draganovandrew, jakobrj, scheel, davide, ira, cigdem}@cs.au.dk, tberry@gmu.edu,

Abstract
tSNE and UMAP are popular dimensionality re-
duction algorithms due to their speed and inter-
pretable low-dimensional embeddings. Despite
their popularity, however, little work has been done
to study their full span of differences. We theoret-
ically and experimentally evaluate the space of pa-
rameters in both tSNE and UMAP and observe that
a single one – the normalization – is responsible
for switching between them. This, in turn, implies
that a majority of the algorithmic differences can be
toggled without affecting the embeddings. We dis-
cuss the implications this has on several theoretic
claims behind UMAP, as well as how to reconcile
them with existing tSNE interpretations.
Based on our analysis, we provide a method (GDR)
that combines previously incompatible techniques
from tSNE and UMAP and can replicate the re-
sults of either algorithm. This allows our method
to incorporate further improvements, such as an
acceleration that obtains either method’s outputs
faster than UMAP. We release improved versions
of tSNE, UMAP, and GDR that are fully plug-and-
play with the traditional libraries.

1 Introduction
Dimensionality Reduction (DR) algorithms are invaluable for
qualitatively inspecting high-dimensional data and are widely
used across scientific disciplines. Broadly speaking, these al-
gorithms transform a high-dimensional input into a faithful
lower-dimensional embedding. This embedding aims to pre-
serve similarities among the points, where similarity is often
measured by distances in the corresponding spaces.

tSNE [Van der Maaten and Hinton, 2008] [Van
Der Maaten, 2014] and UMAP [McInnes et al., 2018] are two
widely popular DR algorithms due to their efficiency and in-
terpretable embeddings. Both algorithms establish analogous
similarity measures, share comparable loss functions, and
find an embedding through gradient descent. Despite these
similarities, tSNE and UMAP have several key differences.
First, although both methods obtain similar results, UMAP
prefers large inter-cluster distances while tSNE leans towards

MNIST Fashion-
MNIST

Coil-100

tS
N

E
G

D
R

ts
ne

U
M

A
P

G
D

R
um

ap

Figure 1: A single method (GDR) can recreate tSNE and UMAP
outputs just by changing the normalization.

large intra-cluster distances. Second, UMAP runs signifi-
cantly faster as it performs efficient sampling during gradient
descent. While attempts have been made to study the gaps be-
tween the algorithms [Kobak and Linderman, 2021], [Bohm
et al., 2020], [Damrich and Hamprecht, 2021], there has not
yet been a comprehensive analysis of their methodologies nor
a method that can obtain both tSNE and UMAP embeddings
at UMAP speeds.

We believe that this is partly due to their radically differ-
ent presentations. While tSNE takes a computational angle,
UMAP originates from category theory and topology. De-
spite this, many algorithmic choices in UMAP and tSNE are
presented without theoretical justification, making it difficult
to know which algorithmic components are necessary.

In this paper, we make the surprising discovery that the dif-
ferences in both the embedding structure and computational
complexity between tSNE and UMAP can be resolved via
a single algorithmic choice – the normalization factor. We
come to this conclusion by deriving both algorithms from

ar
X

iv
:2

30
5.

07
32

0v
1

 [
cs

.L
G

]
 1

2
M

ay
 2

02
3

first principles and theoretically showing the effect that the
normalization has on the gradient structure. We supplement
this by identifying every implementation and hyperparameter
difference between the two methods and implementing tSNE
and UMAP in a common library. Thus, we study the effect
that each choice has on the embeddings and show both quan-
titatively and qualitatively that, other than the normalization
of the pairwise similarity matrices, none of these parameters
significantly affect the outputs.

Based on this analysis, we introduce the necessary changes
to the UMAP algorithm such that it can produce tSNE em-
beddings as well. We refer to this algorithm as Gradient Di-
mensionality Reduction (GDR) to emphasize that it is con-
sistent with the presentations of both tSNE and UMAP. We
experimentally validate that GDR can simulate both meth-
ods through a thorough quantitative and qualitative evalua-
tion across many datasets and settings. Lastly, our analysis
provides insights for further speed improvements and allows
GDR to perform gradient descent faster than the standard im-
plementation of UMAP.

In summary, our contributions are as follows:
1. We perform the first comprehensive analysis of the dif-

ferences between tSNE and UMAP, showing the effect
of each algorithmic choice on the embeddings.

2. We theoretically and experimentally show that changing
the normalization is a sufficient condition for switching
between the two methods.

3. We release simple, plug-and-play implementations of
GDR, tSNE and UMAP that can toggle all of the iden-
tified hyperparameters. Furthermore, GDR obtains em-
beddings for both algorithms faster than UMAP.

2 Related Work
When discussing tSNE we are referring to [Van Der Maaten,
2014] which established the nearest neighbor and sampling
improvements and is generally accepted as the standard tSNE
method. A popular subsequent development was presented
in [Linderman et al., 2019], wherein Fast Fourier Transforms
were used to accelerate the comparisons between points.
Another approach is LargeVis [Tang et al., 2016], which
modifies the embedding functions to satisfy a graph-based
Bernoulli probabilistic model of the low-dimensional dataset.
As the more recent algorithm, UMAP has not had as many
variations yet. One promising direction, however, has ex-
tended UMAP’s second step as a parametric optimization on
neural network weights [Sainburg et al., 2020].

Many of these approaches utilize the same optimization
structure where they iteratively attract and repel points. While
most perform their attractions along nearest neighbors in the
high-dimensional space, the repulsions are the slowest op-
eration and each method approaches them differently. tSNE
samples repulsions by utilizing Barnes-Hut (BH) trees to sum
the forces over distant points. The work in [Linderman et
al., 2019] instead calculates repulsive forces with respect to
specifically chosen interpolation points, cutting down on the
O(n log n) BH tree computations. UMAP and LargeVis, on
the other hand, simplify the repulsion sampling by only cal-
culating the gradient with respect to a constant number of

points. These repulsion techniques are, on their face, incom-
patible with one another, i.e., several modifications have to be
made to each algorithm before one can interchange the repul-
sive force calculations.

There is a growing amount of work that compares tSNE
and UMAP through a more theoretical analysis [Damrich
and Hamprecht, 2021][Bohm et al., 2020][Damrich et al.,
2022][Kobak and Linderman, 2021]. [Damrich and Ham-
precht, 2021] find that UMAP’s algorithm does not optimize
the presented loss and provide its effective loss function. Sim-
ilarly [Bohm et al., 2020] analyze tSNE and UMAP through
their attractive and repulsive forces, discovering that UMAP
diverges when using O(n) repulsions per epoch. We expand
on the aforementioned findings by showing that the forces
are solely determined by the choice of normalization, giving
a practical treatment to the proposed ideas. Lastly, [Dam-
rich et al., 2022] provides the interesting realization that tSNE
and UMAP can both be described through contrastive learn-
ing approaches. Our work differs from theirs in that we ana-
lyze the full space of parameters in the algorithms and distill
the difference to a single factor, allowing us to connect the
algorithms without the added layers of contrastive learning
theory. Lastly, the authors in [Kobak and Linderman, 2021]
make the argument that tSNE can perform UMAP’s mani-
fold learning if given UMAP’s initialization. Namely, tSNE
randomly initializes the low dimensional embedding whereas
UMAP starts from a Laplacian Eigenmap [Belkin and Niyogi,
2003] projection. While this may help tSNE preserve the lo-
cal kNN structure of the manifold, it is not true of the macro-
level distribution of the embeddings. Lastly, [Wang et al.,
2021] discusses the role that the loss function has on the re-
sulting embedding structure. This is in line with our results,
as we show that the normalization’s effect on the loss func-
tion is fundamental in the output differences between tSNE
and UMAP.

3 Comparison of tSNE and UMAP
We begin by formally introducing the tSNE and UMAP algo-
rithms. Let X ∈ Rn×D be a high dimensional dataset of n
points and let Y ∈ Rn×d be a previously initialized set of n
points in lower-dimensional space such that d < D. Our aim
is to define similarity measures between the points in each
space and then find the embedding Y such that the pairwise
similarities in Y match those in X .

To do this, both algorithms define high- and low-
dimensional non-linear functions p : X × X → [0, 1] and
q : Y × Y → [0, 1]. These form pairwise similarity matrices
P (X), Q(Y) ∈ Rn×n, where the i, j-th matrix entry repre-
sents the similarity between points i and j. Formally,

ptsnej|i (xi, xj) =
exp(−d(xi, xj)

2/2σ2
i)∑

k 6=l exp(−d(xk, xl)2/2σ2
k)

qtsneij (yi, yj) =
(1 + ||yi − yj ||22)−1∑
k 6=l(1 + ||yk − yl||22)−1

(1)

pumap
j|i (xi, xj) = exp

(
(−d(xi, xj)

2 + ρi)/τi
)

qumap
ij (yi, yj) =

(
1 + a(||yi − yj ||22)b

)−1
,

(2)

where d(xi, xj) is the high-dimensional distance func-
tion, σ and τ are point-specific variance scalars1, ρi =
minl 6=i d(xi, xl), and a and b are constants. Note that the
tSNE denominators in Equation 1 are the sums of all the nu-
merators. We thus refer to tSNE’s similarity functions as be-
ing normalized while UMAP’s are unnormalized.

The high-dimensional p values are defined with respect
to the point in question and are subsequently symmetrized.
WLOG, let pij = S(pj|i, pi|j) for some symmetrization func-
tion S. Going forward, we write pij and qij without the su-
perscripts when the normalization setting is clear from the
context.

Given these pairwise similarities in the high- and low-
dimensional spaces, tSNE and UMAP attempt to find the
embedding Y such that Q(Y) is closest to P (X). Since
both similarity measures carry a probabilistic interpretation,
we find an embedding by minimizing the KL divergence
KL(P‖Q). This gives us:

Ltsne =
∑
i6=j

pij log
pij
qij

(3)

Lumap =
∑
i6=j

pij log
pij
qij

+ (1− pij) log
1− pij
1− qij

(4)

In essence, tSNE minimizes the KL divergence of the entire
pairwise similarity matrix since its P and Q matrices sum to
1. UMAP instead defines Bernoulli probability distributions
{pij , 1 − pij}, {qij , 1 − qij} and sums the KL divergences
between the n2 pairwise probability distributions 2.

TSNE UMAP

Figure 2: Visualization of the repulsive forces in tSNE (left) and
UMAP (right). tSNE calculates the repulsion for representative
points and uses this as a proxy for nearby points, giving O(n) total
repulsions acting on each point. UMAP calculates the repulsion to
a pre-defined number of points and ignores the others, giving O(1)
per-point repulsions. Bright red points are those for which the gra-
dient is calculated; arrows are the direction of repulsion.

3.1 Gradient Calculations
We now describe and analyze the gradient descent approaches
in tSNE and UMAP. First, notice that the gradients of each
algorithm change substantially due to the differing normal-
izations. In tSNE, the gradient can be written as an attractive

1In practice, we can assume that 2σ2
i is functionally equivalent

to τi, as they are both chosen such that the entropy of the resulting
distribution is equivalent.

2Both tSNE and UMAP set the diagonals of P and Q to 0

tSNE UMAP Frob-UMAP

1 2 3 4
High dim distance >>

4

3

2

1

Lo
w

di
m

 d
ist

an
ce

 >
>

1.0

0.5

0.0

0.5

1.0

1 2 3 4
High dim distance >>

4

3

2

1

Lo
w

di
m

 d
ist

an
ce

 >
>

25

20

15

10

5

0

1 2 3 4
High dim distance >>

4

3

2

1

Lo
w

di
m

 d
ist

an
ce

 >
>

0

1

2

3

4

Figure 3: Gradient relationships between high- and low-dimensional
distances for tSNE, UMAP, and UMAP under the Frobenius norm.
The dotted line represents the locations of magnitude-0 gradients.
Higher values correspond to attractions while lower values corre-
spond to repulsions. The left image is a recreation of the original
gradient plot in [Van der Maaten and Hinton, 2008].

AtSNE
i and a repulsiveRtsne

i force acting on point yi with

∂Ltsne

∂yi
= −4Z

∑
j,j 6=i

pijqij(yi − yj)−
∑
k,k 6=i

q2ik(yi − yk)

(5)

= 4Z(Atsne
i +Rtsne

i)

where Z is the normalization term in qtSNE
ij . On the other

hand, UMAP’s attractions and repulsions3 are presented as
[McInnes et al., 2018]

Aumap
i =

∑
j,j 6=i

−2ab‖yi − yj‖2(b−1)2

1 + ‖yi − yj‖22
pij(yi − yj) (6)

Rumap
i =

∑
k,k 6=i

2b

ε+ ‖yi − yk‖22
qik(1− pik)(yi − yk). (7)

In the setting where a = b = 1 and ε = 0, Equations 6, 7 can
be written as4

Aumap
i = −2

∑
j,j 6=i

pijqij(yi − yj)

Rumap
i = 2

∑
k,k 6=i

q2ik
1− pik
1− qik

(yi − yk)
(8)

We remind the reader that we are overloading notation – p
and q are normalized when they are in the tSNE setting and
are unnormalized in the UMAP setting.

In practice, tSNE and UMAP optimize their loss functions
by iteratively applying these attractive and repulsive forces. It
is unnecessary to calculate each such force to effectively esti-
mate the gradient, however, as the pij term in both the tSNE
and UMAP attractive forces decays exponentially. Based on
this observation, both methods establish a nearest neighbor
graph in the high-dimensional space, where the edges repre-
sent nearest neighbor relationships between xi and xj . It then
suffices to only perform attractions between points yi and yj
if their corresponding xi and xj are nearest neighbors.

This logic does not transfer to the repulsions, however, as
the Student-t distribution has a heavier tail so repulsions must

3The ε value is only inserted for numerical stability
4We derive this in section A.2 in the supplementary material

be calculated evenly across the rest of the points. tSNE does
this by fitting a Barnes-Hut tree across Y during every epoch.
If yk and yl are both in the same tree leaf then we assume
qik = qil, allowing us to only calculate O(log(n)) similari-
ties. Thus, tSNE estimates all n − 1 repulsions by perform-
ing one such estimate for each cell in Y ’s Barnes-Hut tree.
UMAP, on the other hand, simply obtains repulsions by sam-
pling a constant number of points uniformly and only apply-
ing those repulsions. These repulsion schemas are depicted
in Figure 2. To apply the gradients, tSNE collects all of them
and performs momentum gradient descent across the entire
dataset whereas UMAP moves each point immediately upon
calculating its forces.

There are a few differences between the two algorithms’
gradient descent loops. First, the tSNE learning rate stays
constant over training while UMAP’s linearly decreases. Sec-
ond, tSNE’s gradients are strengthened by adding a “gains”
term which scales gradients based on whether they point in
the same direction from epoch to epoch5. We refer to these
two elements as gradient amplification.

Note that UMAP’s repulsive force has a 1 − pik term that
is unavailable at runtime, as xi and xk may not have been
nearest neighbors. In practice, UMAP estimates these 1 −
pik terms by using the available pij values6. We also note
that UMAP does not explicitly multiply by pij and 1 − pik.
Instead, it samples the forces proportionally to these scalars.
For example, if pij = 0.1 then we apply that force without
the pij multiplier once every ten epochs. We refer to this as
scalar sampling.

3.2 The Choice of Normalization
We now present a summary of our theoretical results before
providing their formal statements. As was shown in [Bohm
et al., 2020], the ratio between attractive and repulsive mag-
nitudes determines the structure of the resulting embedding.
Given this context, Theorem 1 shows that the normalization
directly changes the ratio of attraction/repulsion magnitudes,
inducing the difference between tSNE and UMAP embed-
dings. Thus, we can toggle the normalization to alternate
between their outputs. Furthermore, Theorem 2 shows that
the attraction/repulsion ratio in the normalized setting is inde-
pendent of the number of repulsive samples collected. This
second point allows us to accelerate tSNE to UMAP speeds
without impacting embedding quality by simply removing the
dependency on Barnes-Hut trees and calculating 1 per-point
repulsion as in UMAP. We now provide the necessary defini-
tions for the theorems.

Assume that the pij terms are given. We now consider the
dataset Y probabilistically by defining a set of random vari-
ables vij = yi − yj and assume that all O(n2) vij vectors
are i.i.d. around a non-zero mean. Let rij = (1 + |vij |2)−1

and define Z =
∑n2

i,j rij as the sum over n2 pairs of points
and Z̃ =

∑n
i,j rij as the sum over n pairs of points. Then

5This term has not been mentioned in the literature but is present
in common tSNE implementations.

6When possible, we use index k to represent repulsions and j
to represent attractions to highlight that pik is never calculated in
UMAP. See Section A.6 in the supplementary material for details.

applying n per-point repulsions gives us the force acting on
point yi of E[|Rtsne|] = E[

∑n
j ||(r2ij/Z2) · vij ||]. We now

define an equivalent force term in the setting where we have
1 per-point repulsion: E[|R̃tsne|] = E[||(r2ij/Z̃2)·vij ||]. Note
that we have a constant number c of attractive forces acting
on each point, giving E[|Atsne|] = c ·ptsneij E[||(rij/Z) ·vij ||]
and E[|Ãtsne|] = c · ptsneij E[||(rij/Z̃) · vij ||].

Thus, |Atsne| and |Rtsne| represent the magnitudes of the
forces when we calculate tSNE’s O(n) per-point repulsions
while |Ãtsne| and |R̃tsne| represent the forces when we have
UMAP’s O(1) per-point repulsions. Given this, we have the
following theorems:
Theorem 1. Let ptsneij ∼ 1/(cn) and d(xi, xj) >√

log(n2 + 1)τ . Then
E[|Aumap

i |]
E[|Rumap

i |]
<

E
[
|Ãtsne

i |
]

E
[
|R̃tsne

i |
] .

Theorem 2.
E [|Atsne

i |]
E [|Rtsne

i |]
=

E
[
|Ãtsne

i |
]

E
[
|R̃tsne

i |
]

The proofs are given in Sections A.3 and A.4 of the sup-
plementary material. We point out that ptsneij is normalized
over the sum of all cn attractions that are sampled, giving us
the estimate ptsneij ∼ 1/(cn).

Theorem 1’s result is visualized in the gradient plots in Fig-
ure 3. There we see that the UMAP repulsions can be orders
of magnitude larger than the corresponding tSNE ones, even
when accounting for the magnitude of the attractions. Fur-
thermore, Section 5 evidences that toggling the normalization
is sufficient to switch between the algorithms’ embeddings
and that no other hyperparameter choice accounts for the dif-
ference in inter-cluster distances between tSNE and UMAP.

4 Unifying tSNE and UMAP
This leads us to GDR– a modification to UMAP that can
recreate both tSNE and UMAP embeddings at UMAP speeds.
We choose the general name Gradient Dimensionality Reduc-
tion to imply that it is both UMAP and tSNE.

Our algorithm follows the UMAP optimization procedure
except that we (1) replace the scalar sampling by iteratively
processing attractions/repulsions and (2) apply the gradients
after having collected all of them, rather than immediately
upon processing each one. The first change accommodates
the gradients under normalization since the normalized re-
pulsive forces do not have the 1 − pik term to which UMAP
samples proportionally. The second change allows for per-
forming momentum gradient descent for faster convergence
in the normalized setting.

Since we follow the UMAP optimization procedure, GDR
defaults to producing UMAP embeddings. In the case of
replicating tSNE, we simply normalize the P and Q matri-
ces and scale the learning rate. Although we only collect
O(1) attractions and repulsions for each point, their magni-
tudes are balanced due to Theorems 1 and 2. We refer to GDR
as GDRumap if it is in the unnormalized setting and as GDRtsne
if it is in the normalized setting. We note that changing the
normalization necessitates gradient amplification.

Initialization Distance function Symmetrization Sym Attraction Scalars
Y initialization High-dim

distances calculation Setting pij = pji
Attraction(yi, yj)

applied to both
Values for
a and b

tSNE Random d(xi, xj) (pi|j + pj|i)/2 No a = 1, b = 1
UMAP Lapl. Eigenmap d(xi, xj)−mink d(xi, xk) pi|j+pj|i−pi|jpj|i Yes Grid search

Table 1: List of differences between hyperparameters of tSNE and UMAP. These are analyzed in Figures 3, 4, 7, 9.

MNIST MNIST Fashion-MNIST Fashion-MNIST Swiss Roll Swiss Roll

tS
N

E
U

M
A

P

Table 2: Effect of changing the normalization for the original tSNE and UMAP algorithms on the MNIST, Fashion-MNIST, and Swiss Roll
datasets. Each dataset is shown with normalization followed by no normalization. We use Laplacian Eigenmap initializations for consistent
orientation. The normalized UMAP plots were made with the changes described in section 5.

By allowing GDR to toggle the normalization, we are free
to choose the simplest options across the other parameters.
GDR therefore defaults to tSNE’s asymmetric attraction and
a and b scalars along with UMAP’s distance-metric, initial-
ization, nearest neighbors, and pij symmetrization.

The supplementary material provides some further infor-
mation on the flexibility of GDR (A.1), such as an acceler-
ated version of the algorithm where we modify the gradient
formulation such that it is quicker to optimize. This change
induces a consistent 2× speedup of GDR over UMAP. De-
spite differing from the true KL divergence gradient, we find
that the resulting embeddings are comparable. Our reposi-
tory also provides a CUDA kernel that calculates GDRumap
and GDRtsne embeddings in a distributed manner on a GPU.

4.1 Theoretical Considerations
UMAP’s theoretical framework identifies the existence of
a locally-connected manifold in the high-dimensional space
under the UMAP pseudo-distance metric d̃. This pseudo-
distance metric is defined such that the distance from point xj
to xi is equal to d̃(xi, xj)=d(xi, xj)−minl 6=i d(xi, xl). De-
spite this being a key element of the UMAP foundation, we
find that substituting the Euclidean distance for the pseudo-
distance metric seems to have no effect on the embeddings,
as seen in Tables 3 and 4. It is possible that the algo-
rithm’s reliance on highly non-convex gradient descent devi-
ates enough from the theoretical discussion that the pseudo-
distance metric loses its applicability. It may also be the case
that this pseudo-distance metric, while insightful from a the-
oretical perspective, is not a necessary calculation in order to
achieve the final embeddings.

Furthermore, many of the other differences between tSNE
and UMAP are not motivated by the theoretical foundation

of either algorithm. The gradient descent methodology is
entirely heuristic, so any differences therein do not impact
the theory. This applies to the repulsion and attraction sam-
pling and gradient descent methods. Moreover, the high-
dimensional symmetrization function, embedding initializa-
tion, symmetric attraction, and a, b scalars can all be switched
to their alternative options without impacting either method’s
consistency within its theoretical presentation. Thus, each of
these heuristics can be toggled without impacting the embed-
ding’s interpretation, as most of them do not interfere with
the theory and none affect the output.

We also question whether the choice of normalization is
necessitated by either algorithm’s presentation. tSNE, for ex-
ample, treats the normalization of P and Q as an assumption
and provides no further justification. In the case of UMAP,
it appears that the normalization does not break the assump-
tions of the original paper [McInnes et al., 2018, Sec. 2,3].
We therefore posit that the interpretation of UMAP as finding
the best fit to the high-dimensional data manifold extends to
tSNE as well, as long as tSNE’s gradients are calculated un-
der the pseudo-distance metric in the high-dimensional space.
We additionally theorize that each method can be paired with
either normalization without contradicting the foundations
laid out in its paper.

We evidence the fact that tSNE can preserve manifold
structure at least as well as UMAP in Table 2, where Barnes-
Hut tSNE without normalization cleanly maintains the struc-
ture of the Swiss Roll dataset. We further discuss these man-
ifold learning claims in the supplementary material (A.5).

For all of these reasons, we make the claim that tSNE and
UMAP are computationally consistent with one another. That
is, we conjecture that, up to minor changes, one could have
presented UMAP’s theoretical foundation and implemented

Fashion
MNIST

Coil
100

Single
Cell

Cifar-10
kN

N
A

cc
. UMAP 78.0; 0.5 80.8; 3.3 43.4; 1.9 24.2; 1.1

GDRumap 77.3; 0.7 77.4; 3.4 42.8; 2.2 23.8; 1.1

tSNE 80.1; 0.7 63.2; 4.2 43.3; 1.9 28.7; 2.5
GDRtsne 78.6; 0.6 77.2; 4.4 44.8; 1.4 25.6; 1.1

V-
sc

or
e UMAP 60.3; 1.4 89.2; 0.9 60.6; 1.3 7.6; 0.4

GDRumap 61.7; 0.8 91.0; 0.6 60.1; 1.6 8.1; 0.6

tSNE 54.2; 4.1 82.9; 1.8 59.7; 1.1 8.5; 0.3
GDRtsne 51.7; 4.7 85.7; 2.6 60.5; 0.8 8.0; 3.7

Table 3: Row means and std. deviations for kNN-accuracy and
V-score on Fashion MNIST, Coil-100, Single-Cell, and Cifar-10
datasets. For example, the cell [Fashion-MNIST, kNN accuracy,
tSNE] implies that the mean kNN accuracy across the hyperparam-
eters in Table 1 was 80.1 for tSNE on the Fashion-MNIST dataset.

it with the tSNE algorithm or vice-versa.

4.2 Frobenius Norm for UMAP
Finally, even some of the standard algorithmic choices can
be modified without significantly impacting the embeddings.
For example, UMAP and tSNE both optimize the KL diver-
gence, but we see no reason that the Frobenius norm cannot
be substituted in its place. Interestingly, the embeddings in
Figure 8 in the supplementary material show that optimiz-
ing the Frobenius norm in the unnormalized setting produces
outputs that are indistinguishable from the ones obtained by
minimizing the KL-divergence. To provide a possible indi-
cation as to why this occurs, Figure 3 shows that the zero-
gradient areas between the KL divergence and the Frobenius
norm strongly overlap, implying that a local minimum under
one objective satisfies the other one as well.

We bring this up for two reasons. First, the Frobenius
norm is a significantly simpler loss function to optimize than
the KL divergence due to its convexity. We hypothesize that
there must be simple algorithmic improvements that can ex-
ploit this property. Further detail is given in Section A.7 in
the supplementary material. Second, it is interesting to con-
sider that even fundamental assumptions such as the objec-
tive function can be changed without significantly affecting
the embeddings across datasets.

5 Results
Metrics. There is no optimal way to compare embeddings
as performing an analysis at the point-level loses global in-
formation while studying macro-structures loses local infor-
mation. To account for this, we employ separate metrics to
study the embeddings at the micro- and macro-scales. Specif-
ically, we use the kNN accuracy to analyze preservation of
local neighborhoods as established in [Van Der Maaten et al.,
2009] and the V-measure [Rosenberg and Hirschberg, 2007],
a standard tool for evaluating cluster preservation, to study
the embedding’s global cluster structures7.

7We provide formalization of these metrics in the supplementary
material (A.8)

Hyperparameter effects. We first show that a majority of the
differences between tSNE and UMAP do not significantly af-
fect the embeddings. Specifically, Table 4 shows that we can
vary the hyperparameters in Table 1 with negligible change
to the embeddings of any discussed algorithm. Equivalent
results on other datasets can be found in Tables 4 and 9 in
the supplementary material. Furthermore, Table 3 provides
quantitative evidence that the hyperparameters do not affect
the embeddings across datasets; similarly, Table 9 in the sup-
plementary material confirms this finding across algorithms.

Looking at Table 4, the initialization and the symmetric at-
traction induce the largest variation in the embeddings. For
the initialization, the relative positions of clusters change
but the relevant inter-cluster relationships remain consistent8.
Enabling symmetric attraction attracts yj to yi when we at-
tract yi to yj . Thus, switching from asymmetric to symmetric
attraction functionally scales the attractive force by 2. This
leads to tighter tSNE clusters that would otherwise be evenly
spread out across the embedding, but does not affect UMAP
significantly. We thus choose asymmetric attraction for GDR
as it better recreates tSNE embeddings.

We show the effect of single hyperparameter changes for
combinatorial reasons. However, we see no significant dif-
ference between changing one hyperparameter or any num-
ber of them. We also eschew including hyperparameters that
have no effect on the embeddings and are the least interesting.
These include the exact vs. approximate nearest neighbors,
gradient clipping, and the number of epochs.
Effect of Normalization. Although Theorem 2 shows that
we can take fewer repulsive samples without affecting the re-
pulsion’s magnitude, we must also verify that the angle of the
repulsive force is preserved as well. Towards this end, we
plot the average angle between the tSNE Barnes-Hut repul-
sions and the UMAP sampled repulsions in Figure 4. We see
that, across datasets, the direction of the repulsion remains
consistent throughout the optimization process. Thus, since
both the magnitude and the direction are robust to the num-
ber of samples taken, we conclude that one can obtain tSNE
embeddings with UMAP’s O(1) per-point repulsions.

A
ng

le
(r

ad
ia

ns
)

MNIST epochs Coil-100 epochs Swiss Roll epochs

Figure 4: Average angle in radians between repulsive forces calcu-
lated with O(1) and O(n) repulsions. The red line is at 0 radians.

We now show that toggling the normalization allows tSNE
to simulate UMAP embeddings and vice versa. Table 2 shows
exactly this. First note that tSNE in the unnormalized setting
has significantly more separation between clusters in a man-
ner similar to UMAP. The representations are fuzzier than the

8As such, we employ the Laplacian Eigenmap initialization on
small datasets (<100K) due to its predictable output and the random
initialization on large datasets (>100K) to avoid slowdowns.

Default setting Random init Pseudo distance Symmetrization Sym attraction a, b scalars
tS

N
E

95.1; 70.9 95.2; 70.7 96.0; 73.9 94.9; 70.8 94.8; 80.7 95.1; 73.2

G
D

R
ts

ne

96.1; 67.8 95.6; 61.3 96.1; 63.0 96.1; 68.4 96.3; 72.7 96.1; 68.8

U
M

A
P

95.4; 82.5 96.6; 84.6 94.4; 82.2 96.7; 82.5 96.6; 83.5 96.5; 82.2

G
D

R
um

ap

96.2; 84.0 96.4; 82.1 96.7; 85.2 96.6; 85.1 96.5; 83.3 95.8; 81.2

Table 4: Effect of the algorithm settings from Table 1 on MNIST dataset. Each parameter is changed from its default to its alternative setting;
e.g., the random init column implies that tSNE was initialized with Laplacian Eigenmaps while UMAP and GDR randomly. Below each
image the KNN-accuracy and K-Means V-score show unchanged performance.

UMAP ones as we are still estimatingO(n) repulsions, caus-
ing the embedding to fall closer to the mean of the multi-
modal datasets. To account for the n× more repulsions, we
scale each repulsion by 1/n for the sake of convergence. This
is a different effect than normalizing by

∑
pij as we are not

affecting the attraction/repulsion ratio in Theorem 1.
The analysis is slightly more involved in the case of

UMAP. Recall that the UMAP algorithm approximates the
pij and 1 − pik gradient scalars by sampling the attractions
and repulsions proportionally to pij and 1 − pik, which we
referred to as scalar sampling. However, the gradients in the
normalized setting (Equation 5) lose the 1 − pik scalar on
repulsions. The UMAP optimization schema, then, imposes
an unnecessary weight on the repulsions in the normalized
setting as the repulsions are still sampled according to the no-
longer-necessary 1− pik scalar. Accounting for this requires
dividing the repulsive forces by 1 − pik, but this (with the
momentum gradient descent and stronger learning rate) leads
to a highly unstable training regime. We refer the reader to
Table 7 in the supplementary material for details.

This implies that stabilizing UMAP in the normalized set-
ting requires removing the sampling and instead directly mul-
tiplying by pij and 1 − pik. Indeed, this is exactly what we
do in GDR. Under this change, GDRumap and GDRtsne ob-
tain effectively identical embeddings to the default UMAP
and tSNE ones. This is confirmed in the kNN accuracy and
K-means V-score metrics in Table 3.

Time efficiency. We lastly discuss the speeds of UMAP,
tSNE, GDR, and our accelerated version of GDR in section

A.1 of the supplementary material due to space concerns. Our
implementations of UMAP and GDR perform gradient de-
scent an order of magnitude faster than the standard UMAP li-
brary, implying a corresponding speedup over tSNE. We also
provide an acceleration by doing GDR with scalar sampling
that provides a further 2× speedup. Despite the fact that this
imposes a slight modification onto the effective gradients, we
show that this is qualitatively insignificant in the resulting em-
beddings.

6 Conclusion & Future Work
We discussed the set of differences between tSNE and UMAP
and identified that only the normalization significantly im-
pacts the outputs. This provides a clear unification of tSNE
and UMAP that is both theoretically simple and easy to im-
plement. Beyond this, our analysis has uncovered multiple
misunderstandings regarding UMAP and tSNE while hope-
fully also clarifying how these methods work.

We raised several questions regarding the theory of
gradient-based DR algorithms. Namely, we believe that many
assumptions can be revisited. Is there a setting in which the
UMAP pseudo-distance changes the embeddings? Does the
KL divergence induce a better optimization criterium than the
Frobenius norm? Is it true that UMAP’s framework can ac-
commodate tSNE’s normalization? We hope that we have fa-
cilitated future research into the essence of these algorithms
through identifying all of their algorithmic components and
consolidating them in a simple-to-use codebase.

References
[Belkin and Niyogi, 2003] Mikhail Belkin and Partha

Niyogi. Laplacian eigenmaps for dimensionality re-
duction and data representation. Neural computation,
15(6):1373–1396, 2003.

[Bohm et al., 2020] Jan Niklas Bohm, Philipp Berens, and
Dmitry Kobak. A unifying perspective on neighbor em-
beddings along the attraction-repulsion spectrum. arXiv
preprint arXiv:2007.08902, 2020.

[Damrich and Hamprecht, 2021] Sebastian Damrich and
Fred A Hamprecht. On umap’s true loss function.
Advances in Neural Information Processing Systems, 34,
2021.

[Damrich et al., 2022] Sebastian Damrich, Jan Niklas
Böhm, Fred A Hamprecht, and Dmitry Kobak. Con-
trastive learning unifies t-sne and umap. arXiv preprint
arXiv:2206.01816, 2022.

[Deng, 2012] Li Deng. The mnist database of handwritten
digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[Dong et al., 2011] Wei Dong, Charikar Moses, and Kai Li.
Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th inter-
national conference on World wide web, pages 577–586,
2011.

[Hull, 1994] J. J. Hull. A database for handwritten text
recognition research. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 16(5):550–554, 1994.

[Kobak and Linderman, 2021] Dmitry Kobak and George C
Linderman. Initialization is critical for preserving global
data structure in both t-sne and umap. Nature biotechnol-
ogy, 39(2):156–157, 2021.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical Report, Uni-
versity of Toronto, 2009.

[Linderman et al., 2019] George C Linderman, Manas
Rachh, Jeremy G Hoskins, Stefan Steinerberger, and
Yuval Kluger. Fast interpolation-based t-sne for improved
visualization of single-cell rna-seq data. Nature methods,
16(3):243–245, 2019.

[McInnes et al., 2018] Leland McInnes, John Healy, and
James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[NENE, 1996] SA NENE. Columbia object image library
(coil-100). Technical Report CUCS-006-96, 1996.

[Rosenberg and Hirschberg, 2007] Andrew Rosenberg and
Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In EMNLP-CoNLL,
pages 410–420, 2007.

[Sainburg et al., 2020] Tim Sainburg, Leland McInnes, and
Timothy Q Gentner. Parametric umap embeddings for rep-
resentation and semi-supervised learning. arXiv preprint
arXiv:2009.12981, 2020.

[Tang et al., 2016] Jian Tang, Jingzhou Liu, Ming Zhang,
and Qiaozhu Mei. Visualizing large-scale and high-
dimensional data. In TheWebConf, pages 287–297, 2016.

[Tasic et al., 2018] Bosiljka Tasic, Zizhen Yao, Lucas T
Graybuck, Kimberly A Smith, Thuc Nghi Nguyen, Dar-
ren Bertagnolli, Jeff Goldy, Emma Garren, Michael N
Economo, Sarada Viswanathan, et al. Shared and distinct
transcriptomic cell types across neocortical areas. Nature,
563(7729):72–78, 2018.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[Van Der Maaten et al., 2009] Laurens Van Der Maaten,
Eric Postma, Jaap Van den Herik, et al. Dimensionality re-
duction: a comparative. J Mach Learn Res, 10(66-71):13,
2009.

[Van Der Maaten, 2014] Laurens Van Der Maaten. Ac-
celerating t-sne using tree-based algorithms. JMLR,
15(1):3221–3245, 2014.

[Wang et al., 2021] Yingfan Wang, Haiyang Huang, Cynthia
Rudin, and Yaron Shaposhnik. Understanding how di-
mension reduction tools work: an empirical approach to
deciphering t-sne, umap, trimap, and pacmap for data vi-
sualization. The Journal of Machine Learning Research,
22(1):9129–9201, 2021.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

A Supplementary Material

A.1 Runtime Analysis

The difference in speed between UMAP and Barnes-Hut
tSNE is almost entirely due to two factors – the nearest
neighbor search and the repulsion sampling. Specifically,
UMAP uses nearest neighbor descent [Dong et al., 2011]
to quickly approximate the high-dimensional similarities and
then avoids many gradient calculations by sampling accord-
ing to the pij and 1−pik terms. tSNE, on the other hand, finds
exact nearest neighbors for the high-dimensional similarities
and fits Barnes-Hut trees during every epoch thereafter.

In joining the two methods, we have taken out both of these
differences. Thus, when we run GDRtsne, we are still per-
forming nearest neighbor descent and avoiding the Barnes-
Hut trees. Figure 5 shows that GDRumap and GDRtsne both
outperform the available UMAP library by an order of mag-
nitude. The difference in speed between the normalized and
unnormalized algorithms comes down to two factors. First,
the normalized variant requires about two times more epochs
to converge. Second, it must still calculate the Q normaliza-
tion term, which must be summed over all parallel threads
and requires more accesses to shared memory.

For an honest comparison, we also attempted to speed up
the original UMAP gradient descent algorithm. A significant
portion of this improvement came from changing the paral-
lelization by explicitly handling memory allocations. As seen
in Figure 5, our UMAP implementation runs each epoch at
about the same speed as GDR. However, the accelerated vari-
ants of GDR run about two times faster, thus outperforming
our fastest UMAP implementation by the same factor of two.

Despite the fact that UMAP only calculates attractions and
repulsions with proportional frequency to the scalars, it re-
quires multiple repulsions for each attraction. By instead ap-
plying all of the gradients outside of the optimization loop,
we can utilize gradient descent methodologies such that we
only require one repulsion for each attraction. The end result
becomes a similar number of gradient operations to UMAP.

MNIST Fashion-
MNIST

Coil-100

G
D

R
ts

ne
G

D
R

um
ap

Table 5: We show embeddings for the accelerated variants of
GDRumap and GDRtsne. Notice that the embeddings are very simi-
lar to those in Figure 1.

Accelerated GDR

We now turn to the accelerated version of GDR. This can
be seen in Figure 5 as the models with ‘Acc.’ in their name.
The acceleration comes from a heuristic approximation of the
gradient. Recall that UMAP uses scalar sampling, where they
perform the pij and 1 − pik multiplications by sampling the
attractions and repulsions proportionally to those 0 ≤ p ≤
1 values. On the other hand, GDR explicitly performs the
multiplications.

The accelerated version of GDR, then, has both the explicit
pij and 1 − pik multiplication and only performs the attrac-
tions/repulsions by sampling proportionally to the p value.
This effectively means that we are choosing to focus our op-
timization on those points that have the highest contribution
to the loss. We justify this by observing that the p values
directly scale the loss of the embedding under the KL diver-
gence. Thus, we can incorporate UMAP’s scalar sampling
into GDR as a means of heuristically preferring those connec-
tions that influence our loss the most. By doing both the ex-
plicit multiplication and the scalar sampling, our gradients for
the accelerated variant effectively square the pij and 1 − pik
terms.

Surprisingly, we find that this obtains similar embeddings
in both the normalized and unnormalized settings, which we
show in Figure 5. This is yet another example of the flexibility
of these methods. Not only could we replace the KL diver-
gence with the Frobenius norm, but we can even arbitrarily
modify the gradient formulas without significantly impacting
the embeddings.

103 104 105

Number of points in dataset

10 1

100

101

Op
tim

iza
tio

n
tim

e
(s

)

UMAP
BH-TSNE
Our UMAP impl.
GDR UMAP
GDR TSNE
Acc. GDR UMAP
Acc. GDR TSNE

Figure 5: Runtimes for the methods discussed in this paper. We
show both the speed of the original UMAP algorithm and our im-
plementation of it for a fair comparison. Both axes are log-scale.
Original dataset was the MNIST dataset and points were upsampled
by randomly copying and adding noise.

A.2 UMAP gradient derivation

We start from the equations as they are presented in the
UMAP paper and show that many terms cancel when we as-

sume that a = b = 1 and that ε = 0. Recall that we had

Aumap
i =

∑
j,j 6=i

−2ab‖yi − yj‖2(b−1)2

1 + ‖yi − yj‖22
pij(yi − yj)

Rumap
i =

∑
k,k 6=i

2b

ε+ ‖yi − yk‖22
qik(1− pik)(yi − yk)

We start with Aumap
i :

Aumap
i =

∑
j,j 6=i

−2

1 + ‖yi − yj‖22
pij(yi − yj)

= −2
∑
j,j 6=i

pijqij(yi − yj)

ForRumap
i , notice that

qik =
1

1 + ‖yi − yk‖22

=⇒ ‖yi − yk‖22 =
1

qik
− 1

=
1− qik
qik

Setting a = b = 1 and ε = 0 in Rumap
i and plugging this in

then gives

Aumap
i = 2

∑
k,k 6=i

1(
1− qik
qik

)qik(1− pik)(yi − yk)

= 2
∑
k,k 6=i

q2ik
1− pik
1− qik

(yi − yk)

A.3 Proof of Theorem 1
We first restate the theorem before showing the proof.

Let ptsneij ∼ 1/(cn) and d(xi, xj) >
√

log(n2 + 1)τ .
Then

E[|Aumap
i |]

E[|Rumap
i |]

<
E
[
|Ãtsne

i |
]

E
[
|R̃tsne

i |
]

As mentioned in section 3.2, ptsneij is normalized over the
sum of all cn attractions that are sampled, so ptsneij ∼ 1/(cn)
is an appropriate estimate.

Proof. For simplicity we assume that we are not using the
pseudo-distance function for UMAP’s high-dimensional ker-
nel, meaning that ρi = 0. This only slightly affects the the-
orem’s bound on d(xi, xj) and we showed that the pseudo-
distance does not affect the outputs per the experiments in
Section 5. The exclusion of ρi only comes into play on the
last line of the proof.

Note that the unnormalized attractive and repulsive forces
can be written in terms of our random variables as Aumap

i =
pumap
ij rijvij andRumap

i = r2ij(1− p
umap
ij)/(1− rij)vij .

By Theorem 2, E[Ãtsne
i]/E[R̃tsne

i] = cptsneij /n. Thus,
plugging in ptsneij ∼ 1/(cn) gives E[Ãtsne

i]/E[R̃tsne
i] ∼

1/n2.

Since Aumap
i , Rumap

i , Ãtsne
i , and R̃tsne

i represent the
force exerted by a single point, there are no summations to ac-
count for. Additionally, since the scalars are all non-negative,
the scalars can be placed outside the norms.

Looking at the unnormalized force ratio, we have

E[|Aumap
i |]

E[|Rumap
i |]

=
pumap
ij E [||rijvij ||]

(1− pumap
ij)E

[
|| r2ij
1−rij vij ||

]
Consider that ||r2ij/(1 − rij) · vij || = ||(rijvij) · rij/(1 −

rij)|| > ||rijvij ||, since rij < 1 is a scalar. Thus, we can
write

pumap
ij E [||rijvij ||]

(1− pumap
ij)E

[
|| r2ij
1−rij vij ||

] < pumap
ij

1− pumap
ij

Therefore, it suffices to show that

pumap
ij

1− pumap
ij

<
1

n2

Solving for pumap
ij gives

pumap
ij <

1

n2 + 1

Further solving this for the high-dimensional distance
d(xi, xj) gives

d(xi, xj) >
√

log(n2 + 1)τi

If we had incorporated the pseudo-distance metric, we
would have

d(xi, xj) >
√

log(n2 + 1)τi + ρi

A.4 Proof of theorem 2

Recall the theorem statement:

E [|Atsne
i |]

E [|Rtsne
i |]

=
E
[
|Ãtsne

i |
]

E
[
|R̃tsne

i |
]

Proof. First, notice that Z and Z̃ are sums of i.i.d. random
variables, so we can write Z = n2rij and Z̃ = nrij . Then

the proof is a matter of simple algebraic steps.

E
[
|Atsne

i |
]

= c · E
[
ptsneij ||

rij
Z
vij ||

]
= c · ptsneij E

[
|| rij
n2rij

vij ||
]

= c ·
ptsneij

n2
E[||vij ||]

E
[
|Rtsne

i |
]

= E

∑
j

||
r2ij
Z2

vij ||

=
∑
j

E

[
||
r2ijvij

n4r2ij
||

]

=
1

n4

∑
j

E[||vij ||]

=
nE[||vij ||]

n4
=

E[||vij ||]
n3

E
[
|Ãtsne

i |
]

= c · E
[
ptsneij ||

rij

Z̃
vij ||

]
= c ·

ptsneij

n
E[||vij ||]

E
[
|R̃tsne

i |
]

= E

[
||
r2ij

Z̃2
vij ||

]

= E

[
||
r2ij
n2r2ij

vij ||

]
=

E[||vij ||]
n2

Plugging these values in, we get our theorem statement:

E [|Atsne
i |]

E [|Rtsne
i |]

=
E
[
|Ãtsne

i |
]

E
[
|R̃tsne

i |
] ,

where both attraction/repulsion ratios are equal to cptsneij /n.

A.5 Manifold Learning with tSNE and UMAP
Despite UMAP’s reputation for faithfully representing the
high-dimensional manifold, we question the extent to which
tSNE and UMAP can perform manifold learning. As seen
in Table 6, simply removing the Laplacian Eigenmap initial-
ization prevents tSNE and UMAP from unrolling a swiss-roll
dataset in R10000×3. Since Laplacian Eigenmaps are based on
graph structures that closely match the manifold, using them
for the initialization will pre-condition the embedding to re-
spect the manifold structure. We do not intend to say that
tSNE and UMAP cannot perform manifold learning – we in-
stead use this counterexample to show that these claims could
be better substantiated.

There has been work suggesting that the Laplacian Eigen-
map initialization accounts for the global structure of the data.
This was in reference to the manifold structure, which is de-
fined by the nearest-neighbor graph. Our results are instead
on a more macro-level, where we show that the normalization

TSNE UMAP

N
or

m
al

iz
ed

U
nn

or
m

al
iz

ed

Figure 6: A look at manifold preservation of tSNE and UMAP un-
der random initialization on the swiss roll dataset. Notice that the
manifold is not preserved by any of the methods, regardless of nor-
malization. This implies that the manifold learning effects of UMAP
are largely due to the Laplacian Eigenmap initialization, at least on
this dataset.

impacts the overall structure of the clusters and the spaces
between them. However, we hypothesize that if the Lapla-
cian eigenmap initialization starts with large inter-cluster dis-
tances, then it may subsequently find itself in the large areas
of 0 gradients in figure 3.

MNIST COIL100 Swiss Roll

Figure 7: The effect of normalizing UMAP without the changes dis-
cussed in 5.

A.6 Looking closer at A andR
First, note that the UMAP repulsive force in Equation 7 is
inversely quadratic with respect to the low-dimensional dis-
tance, leading to extreme repulsions between points that are
too close in the low-dimensional space. This comes as a di-
rect result of the log(1− qij) term in equation 3, since

∂ log(1− qij)
∂yi

=
1

1− qij
· ∂qij
∂yi

=
1 + a‖yi − yj‖2b

a‖yi − yj‖2b
· ∂qij
∂yi

,

where the numerator cancels out after expanding ∂qij/∂yi.
This inverse relationship to the distance is inherently un-

stable when ||yi − yj ||22 is small and is handled computation-
ally by adding an ε additive term in equation 7. Nonetheless,
UMAP repulsions are still unwieldy and must be managed
by clipping the gradients and disallowing momentum-based
SGD.

We also point out that most values of pik are unavailable to
us during optimization since we only calculated the P matrix
for nearest neighbors in the high-dimensional space. UMAP
approximates these pik values by plugging in the available
pij term instead. We standardize the UMAP approximation
of pik ≈ pij by setting pik = p̄ij ∀ pik, where p̄ij is the mean
value of P (for known values in P).

We lastly mention that Zqtsne ∼ qumap, so the Zq term
in the tSNE forces is equivalent to the q in the UMAP forces.
However the other pij and qik terms in Atsne and Rtsne re-
main normalized. This creates the effect that UMAP’s gradi-
ents are about a factor of n stronger than the corresponding
tSNE ones. We account for this in GDR by scaling the tSNE
learning rate by a factor of n/k when operating in a normal-
ized setting.

A.7 GDR with the Frobenius Norm

UMAP GDRumap

M
N

IS
T

Fa
sh

io
n-

M
N

IS
T

Figure 8: Embeddings obtained in the unnormalized setting by op-
timizing the Frobenius norm of P (X) − Q(Y) on the MNIST and
Fashion-MNIST datasets.

As discussed in Section A.6, the unknown-at-runtime 1 −
pik scalar in equation 7 is a direct consequence of the KL-
divergence in the unnormalized setting. Surprisingly, replac-
ing the KL divergence by the Frobenius norm gives almost
identical embeddings while reconciling the 1 − pik concern.
We denote the loss under the Frobenius norm by

Lfrob(X,Y) =
∑
i,j

(p(xi, xj)− q(yi, yj))2

This presents us with the following attractive and repulsive
forces acting on point yi

Afrob−umap
i = −4

∑
j

pijq
2
ij(yi − yj)

Rfrob−umap
i = 4

∑
j

q3ij(yi − yj)

We note that the Frobenius norm gradients are only stable in
the unnormalized setting.

Although the embeddings under the squared Frobenius
norm and KL divergence in Tables 4 and 9 have a completely

different theoretical structure, they appear to be qualitatively
and quantitatively comparable. Interestingly, the gradient
plots in 3 show that a majority of the gradient space under
the Frobenius norm still has magnitude zero (deep blue area
in the gradient plots).

The Frobenius norm has multiple advantages over the KL-
divergence. First, its convexity opens the door to many new
approaches towards optimization. Secondly, it avoids the
1− pik scaling factor. Lastly, the Frobenius norm gradients9

provide a convenient function for the attractions and repul-
sions in the unnormalized setting that do not require ε values
for stability. We do not default to minimizing the Frobenius
norm in GDR as it is not the traditionally accepted loss func-
tion.

A.8 Metrics and Datasets

Metrics. We report the kNN-accuracy, i.e., the accuracy of a
k-NN classifier, to assert that objects of a similar class remain
close in the embedding. Assuming that intra-class distances
are smaller than inter-class distances in the high-dimensional
space, a high kNN-accuracy implies that the method effec-
tively preserves similarity during dimensionality reduction.
Unless stated otherwise, we choose k = 100 in-line with prior
work [McInnes et al., 2018].

We study embedding consistency by evaluating KMeans
clustering on datasets that have class labels. We report clus-
ter quality in terms of homogeneity and completeness [Rosen-
berg and Hirschberg, 2007]. Homogeneity is maximized by
assigning only data points of a single class to a single cluster
while completeness is maximized by assigning all data points
of a class to a cluster. For brevity, we report the V-measure,
the average between the homogeneity and completeness. This
metric simply relies on the labeling and does not take the
point locations into account. As such, it is invariant to the
biases inherent in KMeans and serves as a more objective
measure than KMeans loss.
Experiment setup We performed each experiment once as
we show the averages over all hyperparameters, algorithms,
and datasets in our results. Timing experiments were done
on an Intel Core i9 10940X 3.3GHz 14-Core processor, fully
parallelized over the cores.

Datasets. We use standard datasets that are common in
dimensionality reduction papers [Van Der Maaten, 2014],
[McInnes et al., 2018], [Tang et al., 2016]. In particu-
lar, we employ the popular MNIST [Deng, 2012], Fashion-
MNIST [Xiao et al., 2017], CIFAR [Krizhevsky, 2009],
Coil [NENE, 1996] image datasets, and the Swiss Roll syn-
thetic dataset. As tSNE and UMAP are often used on bio-
logical data, we also include the single cell dataset described
in [Tasic et al., 2018]. We chose the ‘cell cluster’ metadata
as the label.

9We wrote the gradients under the assumption that a = b = 1,
although they are simple to calculate in the general setting as well.

Dataset n c D Type

MNIST 60 000 10 784 Images
Fashion-MNIST 60 000 10 784 Images
CIFAR-10 60 000 10 3 072 Images
Coil-100 7 200 100 49 152 Images

Single Cell 23 100 152 45 769 Single Cell

Google News 350 000 – 200 Word Vectors
Swiss Roll 5 000 – 3 Synthetic

Table 6: Dataset characteristics – n samples, c classes, D dimen-
sions [Deng, 2012][Xiao et al., 2017][Krizhevsky, 2009][NENE,
1996][Mikolov et al., 2013][Hull, 1994]. Google News and
Swiss Roll are unlabeled. The Google News dataset is
the 350K most frequent word vectors and can be found at
https://data.world/jaredfern/googlenews-reduced-200-d

UMAP GDRumap GDRtsne

Figure 9: Embeddings on the Google news dataset. We did not run tSNE out of time considerations.

Default setting Random init Pseudo distance Symmetrization Sym attraction a, b scalars

tS
N

E
G

D
R

ts
ne

U
M

A
P

G
D

R
um

ap

Table 7: Effect of the algorithm settings from Table 1 on the Fashion-MNIST dataset, formatted similarly to Table 4.

Default setting Random init Pseudo distance Symmetrization Sym attraction a, b scalars

tS
N

E

42.9; 59.4 43.0; 59.3 46.6; 61.7 43.0; 59.4 40.8; 58.5 43.3; 59.6

G
D

R
ts

ne

45.1; 60.4 44.8; 60.9 45.3; 60.6 44.9; 60.7 42.1; 59.0 46.4; 61.4

U
M

A
P

41.7; 59.7 45.0; 61.7 41.5; 59.5 44.1; 61.0 46.0; 62.4 42.3; 59.5

G
D

R
um

ap

40.4; 58.7 44.8; 61.7 44.2; 60.9 44.9; 61.5 39.8; 57.7 42.9; 60.0

Table 8: Effect of the algorithm settings from Table 1 on the mRNA single-cell dataset, formatted similarly to Table 4.

Dataset Original Init. Pseudo-
distance

Symmet-
rization

Sym
attraction

Scalars

kNN
accuracy

Fashion-MNIST -0.7 -0.4 -0.3 0.4 -0.8 0.7
Coil-100 0.8 -2.8 3.7 2.3 1.1 1.8
Cifar-10 -0.3 -1.0 -0.2 0.8 -1.3 -0.1

V-score
Fashion-MNIST -1.3 1.5 -0.8 -1.6 -0.8 0.4

Coil-100 0.0 -0.2 1.0 0.9 -0.5 0.7
Cifar-10 -0.3 -0.3 -0.3 0.1 -0.4 -0.1

Table 9: Parameter-wise mean change across algorithms. For each parameter, subtract the row-means from the metric values and average
across algorithms. For example, the cell [Pseudo-distance; Coil-100; KNN-accuracy] means that, over the four algorithms tSNE, UMAP,
GDRumap, and GDRtsne, the average difference in pseudo-distance from the row-mean in Table 3 was 3.7. A negative value implies that
switching tSNE’s defaults to UMAP’s and UMAP’s to tSNE’s would hurt performance. Conversely, a positive value implies that we should
be switching tSNE’s default to UMAP’s and vice versa.

	1 Introduction
	2 Related Work
	3 Comparison of tSNE and UMAP
	3.1 Gradient Calculations
	3.2 The Choice of Normalization

	4 Unifying tSNE and UMAP
	4.1 Theoretical Considerations
	4.2 Frobenius Norm for UMAP

	5 Results
	6 Conclusion & Future Work
	A Supplementary Material
	A.1 Runtime Analysis
	Accelerated GDR

	A.2 UMAP gradient derivation
	A.3 Proof of Theorem 1
	A.4 Proof of theorem 2
	A.5 Manifold Learning with tSNE and UMAP
	A.6 Looking closer at A and R
	A.7 GDR with the Frobenius Norm
	A.8 Metrics and Datasets

