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What is the best way to match the nodes of two graphs? This graph alignment problem generalizes graph

isomorphism and arises in applications from social network analysis to bioinformatics. Some solutions assume

that auxiliary information on known matches or node or edge attributes is available, or utilize arbitrary graph

features. Such methods fare poorly in the pure form of the problem, in which only graph structures are given.

Other proposals translate the problem to one of aligning node embeddings, yet, by doing so, provide only a

single-scale view of the graph.

In this paper, we transfer the shape-analysis concept of functional maps from the continuous to the discrete

case, and treat the graph alignment problem as a special case of the problem of finding a mapping between

functions on graphs. We present GRASP, a method that first establishes a correspondence between functions

derived from Laplacian matrix eigenvectors, which capture multiscale structural characteristics, and then

exploits this correspondence to align nodes. We enhance the basic form of GRASP by altering two of its

components, namely the embedding method and the assignment procedure it employs, leveraging its modular,

hence adaptable design. Our experimental study, featuring noise levels higher than anything used in previous

studies, shows that the enhanced form of GRASP outperforms scalable state-of-the-art methods for graph

alignment across noise levels and graph types, and performs competitively with respect to the best non-scalable

ones. We include in our study another modular graph alignment algorithm, CONE, which is also adaptable

thanks to its modular nature, and show it can manage graphs with skewed power-law degree distributions.
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(a) Karate club; red edges removed. (b) Alignment by GRASP (top), REGAL (bottom).

Fig. 1. With a few removed edges, REGAL [20], an alignment method based on local features, fails to correctly
align the distorted Karate club graph to the original; GRASP identifies most of nodes (correctly aligned nodes
in green).

1 INTRODUCTION
Graphs model relationships between entities in several domains, e.g., social networks, protein

interaction networks, email communication or chemical molecules. The structure of such graphs

captures information on, e.g., people’s connections, molecule functions, and protein interactions.

At the same time, the expressive nature of graphs also implies complexity, which renders some

fundamental problems hard. For instance, the graph isomorphism problem, which is to determine

whether two graphs share the same structure is neither known to be polynomially solvable nor

NP-complete, and has been used to define the GI complexity class [28]. Problems that generalize

graph isomorphism occur frequently in the field of graph analytics. One of those is theNP-complete

subgraph isomorphism problem; another is graph alignment, which aims to find the best (exact or

inexact) matching among the nodes of a pair of graphs; a solution to this problem is sine qua non

in tasks such as de-anonymizing [44, 63] and identifying users in different social networks [25],

matching objects in images by establishing feature correspondences and comprehending protein

response in the body [26].

In case additional background information is available, such as node and edge attributes in the

graphs to be aligned or valid seed matches, then the problem is solvable via supervised methods [8,

38]. However, in case only graph structures are given, then the problem of aligning two graphs by

matching structures, is at least as hard as graph isomorphism even in its approximate version [1].

Existing approaches to graph alignment are oriented toward using a few heuristic graph features,
such as landmarks, in order to detect a good alignment [20], exploiting additional information such

as node attributes [67] or bipartite networks [31], or optimizing objectives based only on local
connections among nodes [15, 36, 41]. On the other hand, the spectra of Laplacian matrices have
been successfully employed to devise a similarity measure among graphs [55]. Laplacian spectra

capture important multiscale properties, such as local-scale ego-nets and global-scale communities.

Previous approaches rooted in spectral characteristics decompose large matrices expressing all

alignments among edges in two graphs [15, 36, 41] and formulate the solution as finding the leading

eigenvector of such matrices. These approaches disregard most eigenvectors and consider only

local edge variations. To our knowledge, the spectral properties of Laplacian matrices have not yet
been utilized to any significant extent for an end-to-end graph alignment method.

In this paper, we propose GRASP, short for GRaph Alignment through SPectral Signatures, a

principled method to detect a good alignment among graphs based on their spectral characteristics,

i.e., eigenvalues and eigenvectors of their Laplacian matrices [9]. We transfer the methodology of

matching among shapes based on corresponding functions [45] to the domain of graphs: we first

extract a mapping of node-evaluated functions, based on, for example, the graph’s heat kernel
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or PageRank measures, and then apply this mapping to the matching on nodes. Figure 1 shows

an example alignment of the Karate club with a deteriorated version obtained by removing some

edges; GRASP correctly aligns most of the nodes, while REGAL [20] based on local descriptors fails

to do so.

In addition, we interpret GRASP as a representative of a family of modular graph alignment

algorithms; GRASP is modular by nature, i.e., made of adjustable components. In contrast, other

graph alignment methods aremonolithic, i.e., they are made of components such as matrix factoriza-

tion [36, 41] or integer programming [26] that were hard to adapt, are designed for a specific graph

type, e.g., biological [3] or bipartite networks [31], and fare poorly on other types [20]. Embedding-

based methods [64, 71] strongly rely on an appropriate embedding model tailored for each graph

type. On the other hand, the modular nature also encapsulates two other graph alignment methods,

REGAL [20] and CONE [7], that leverage advances in node embeddings [47, 49, 56, 57]; it is outlined

as follows:

(1) Embed. Compute an embedding for each node.

(2) Align. Align the embedding spaces of both graphs so that similar nodes are close to each other

in the common space.

(3) Assign.Match the transformed embeddings by some linear assignment algorithm.

We propose enhancements in each part of this modular framework in GRASP and CONE,

interchanging, enhancing, and adding to framework components. In a targeted experimental study,

we evaluate GRASP with a set of different components and show that these enhancements improve

upon the effectiveness in recovering real-graph alignments with high accuracy and nearly no impact

on efficiency. This work completes, consolidates, and extends two precedent short publications,

[21] and [34]; it expands and completes the experimental study in [21] by applying to GRASP the

enhancements introduced in [34] and including a wider array of data sets and an exhaustive set of

competing methods. In particular, we contribute the following material in addition to previously

published work:

(1) We extensively discuss the modular graph alignment framework and possible enhancements

to GRASP (Section 5).

(2) We include the recently proposed graph alignment methods S-GWL [61] and CONE [7] in

our experimental comparison (Section 6).

(3) We examine and provide additional experimental insights on the effects of parameter choice

in GRASP, including the parameter 𝑘 , i.e., the number of eigenvectors used for computations

and 𝑞, i.e., the number of corresponding functions used (Section 6.1).

(4) We conduct new experiments on real-world data, namely two temporal proximity networks

and different variants of a PPI-network (Table 2, Section 6.4).

(5) We provide additional experiments examining scalability in the number of nodes in a graph

(Section 6.6).

2 RELATEDWORK
We distinguish graph alignment methods introduced in related work in two main categories:

(i) restricted alignment methods, which require a ground-truth mapping or information besides

a binary adjacency matrix; and (ii) unrestricted alignment methods, which require neither

supervision nor information besides an adjacency matrix. Table 1 overviews the mean features of

related works.
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Method Unrestrict. Spectral Flexible Precomp. Multiscale Modular Scalable Functional

BigAlign [31] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

FINAL [67] ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

IsoRank [54] ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘

REGAL [20] ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✘

GRAMPA [14] ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘

LaplMatch [27] ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘

LREA [41] ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘

CONE [7] ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✘

S-GWL [61] ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘

GRASP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1. Related work in terms of present (✔) and absent (✘) properties: unrestricted methods work by default
with plain graph structures as input; IsoRank requires auxiliary node similarity input; FINAL requires node or
edge attribute information to perform reasonably well [20]; spectral methods use the spectra of alignment
matrices; flexible methods accommodate different alignment algorithms (e.g. bipartite matching, nearest
neighbors). Among unrestricted methods (rows 5–10), LREA does not benefit from offline precomputation.
GRASP naturally captures multiscale properties thanks to its spectral basis, while S-GWL coarsens the graph
to progressively match structures at different scales. REGAL, CONE and GRASP are modular, hence allow
boosting various parts of the algorithm. FINAL, REGAL, GRAMPA, LREA, and GRASP can scale, running on
graphs of more than 10 000 nodes in less than 1 hour. GRASP treats the problem as an alignment among
functions, embracing a variety of node functions, including embeddings.

2.1 Restricted Alignment
Restricted methods incorporate non-structural information. We further subdivide restricted methods

into supervised or assisted ones.

Supervised methods exploit pre-aligned pairs of seed nodes to construct a first alignment. Per-
colation graph matching (PGM) [25, 65] propagates ground-truth alignments across the network.

Representation learning approaches, such as IONE [38], PALE [40], and DeepLink [69], learn a

low-dimensional embedding of the graph nodes and map the node embeddings of one graph to

another. A similar method aligns multiple networks at once [8]. Other recent embedding-based

alignment methods, such as cM
2
NE [60], SSPDG [71] and NEXTALIGN [68] require pre-aligned

seed nodes. BRIGHT [64] uses embeddings and neighborhood consistency, by which an align-

ment should preserve the neighborhoods of aligned nodes. Active network alignment [39] and,
recently, ATTENT [70] apply active learning to elicit expert guidance on alignments. DANA [12],

an adversarial-based learning method, also requires ground-truth alignments in the training phase.

Overall, such supervised methods rely on prior knowledge, which may not be available.

Assisted methods utilize auxiliary information or structural constraints. BigAlign [31] focuses on

bipartite graphs; however, most graphs are not bipartite. FINAL [67] aligns nodes based on similarity

of topology and attributes. IsoRank [54] aligns multiple protein-protein interaction networks aiming

to maximize quality across all input networks; it constructs an eigenvalue problem for every pair

of input networks and extracts a global alignment across the input set by a 𝑘-partite matching; it

relies on structural properties (PageRank), but also on a similarity measure between nodes which in

a biology-specific case builds on the similarity of the proteins. It is improved by a greedy approach

in [29] and in IsoRankN [36], which performs spectral clustering on the induced graph of pairwise

alignment scores, claiming error-tolerance and computationally efficiency. Both FINAL and IsoRank

also present an unrestricted variant, the former variant being a scaled version of the latter. Yet,

as they are deliberately designed for, and perform well in, the case where additional information

is available, we classify both methods as restricted. GSANA [66] lets pairwise distances to seed

nodes guide the matching. Another variant matches weigthed matrices using their spectra [58];
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that is inapplicable to the unweighted case. Karakasis et al. [23] propose a refinement method

for precomputed alignments, which qualifies as an assisted method rather than a stand-alone

alignment algorithm. WAlign [18] aligns attributed graphs using Graph Convolutional Networks

and a Wasserstein discriminator. Overall, such restricted methods cannot handle cases where the

only given information is graph structure. REGAL [20] constructs node embeddings based on the

connectivity structure and node attributes, and uses the similarity between these features for node

alignment. Similarly to IsoRank and FINAL, REGAL also works in the unrestricted case where no

attributes are available, and, moreover, performs well at that; hence we use its unrestricted version

in our experiments.

2.2 Unrestricted Alignment
Unrestricted methods require neither prior knowledge of ground-truth pairs nor other information

on the input graph. We categorize them as follows.

Integer-programming methods. Klau [26] presents a Lagrangian relaxation for the integer

programming problem posed by network alignment; though the resulting algorithm is polynomial,

it is still impracticable for large networks.

Embedding-based methods. CONE [7] realigns node representations, without prejudice to the

representation used. GWL [62] jointly optimizes for node embeddings and alignment by minimizing

the Gromov-Wasserstein distance among the embedding distances. Contrariwise to CONE and

REGAL, it computes the embeddings and the final alignment at the same time. S-GWL [61], a

scalable version of GWL, achieves scalability by aligning progressively smaller graph partitions.

Matrix decomposition methods. EigenAlign [15] formulates the problem as a Quadratic Assign-

ment Problem that considers both matches and mismatches and solves it by spectral decomposition
of matrices. Building thereupon, Low-Rank EigenAlign (LREA) [41] solves a maximum weight

bipartite matching problem on a low-rank version of a node-similarity matrix, hence requires

memory linear in the size of the graphs. However, EigenAlign variants use the first eigenvector

of a joint adjacency matrix between the two graphs to be aligned, rather than the eigenvectors of

graph Laplacians, which provides richer information.

Belief propagation methods. Alternatively, NetAlign [4] solves a specific sparse variant of the
graph alignment problem by a message-passing algorithm.

2.3 Shape Matching
Our work is inspired by shape matching methods that employ spectral properties [32, 37, 45].

Functional maps [45] generalize the matching of points to the matching of corresponding functions
among shapes, by revealing a common decomposition of such functions using the eigenvectors

of the Laplace-Beltrami operator; the graph equivalent of that operator is a graph’s Laplacian

matrix. Extensions of this methods match non-isometric shapes by aligning their Laplace-Beltrami

operators’ eigenbases [32], and match a part of a shape to another full shape in the spectral

domain [37] without requiring spatially modeling the part of a shape.

2.4 Spectral Methods
Graph spectra [9] facilitate problem-solving in graph analysis, image partitioning, graph search, and

machine learning [53]. NetLSD [55] uses Laplacian spectral signatures to detect graph similarity, but
not to align graphs, in a multi-scale fashion. LaplMatch [27] derives a permutation matrix for shape

matching from Laplacian eigenvectors, without considering multiscale properties. While calculating

a graph’s spectrum is computationally challenging, recent work proposes an approximation via

spectral moments estimated through random walks [10].
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3 BACKGROUND AND PROBLEM

Graph Alignment. Consider two undirected graphs,𝐺1 = (𝑉1, 𝐸1) and𝐺2 = (𝑉2, 𝐸2), where𝑉∗ are
node sets, 𝐸∗ ⊆ 𝑉∗ ×𝑉∗ are edges, and1 |𝑉1 | = |𝑉2 | = 𝑛. A graph’s adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 is

a binary matrix where 𝐴𝑖 𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗 and 𝐴𝑖 𝑗 = 0 otherwise.

Definition 1. Given two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), a graph alignment 𝑅 : 𝑉1 → 𝑉2

is an injective function that maps nodes of 𝐺1 to nodes of 𝐺2.

The graph alignment problem is to find such a function, which, expressed as a permutation matrix

𝑃 , minimizes the difference ∥𝑃𝐴1𝑃
⊤ − 𝐴2∥2. In case of isomorphic graphs, there exists a 𝑃 such

that 𝑃𝐴1𝑃
⊤ = 𝐴2, i.e., aligns the two graphs exactly. We are interested in the general, unrestricted

problem case, in which there are no additional constraints on node attributes or matches known in

advance. The problem is hard and not known to be in NP.
We may express graph alignment in terms of a ground truth function 𝜏 : 𝑉1 → 𝑉2 that returns

the correct alignment between the nodes𝑉1 in𝐺1 and the nodes𝑉2 in𝐺2. In the case of isomorphic

graphs, this ground truth function 𝜏 is a bijection that admits an inverse mapping 𝜏−1
: 𝑉2 → 𝑉1.

The composition of the indicator function 𝛿𝑖 : 𝑉1 → {0, 1} with 𝜏−1
, 𝛿𝑖 ◦ 𝜏−1

: 𝑉2 → {0, 1} expresses
the complete isomorphism among the two graphs, returning 1 if node 𝑢 ∈ 𝑉2 maps to node 𝑖 ∈ 𝑉1,

0 otherwise. By generalization, the composition 𝑔𝑖 = 𝑓𝑖 ◦ 𝜏−1
maps functions in 𝐺2 to functions

in 𝐺1 for any family of real-valued functions 𝑓1, ..., 𝑓𝑞, 𝑓𝑖 : 𝑉1 → R and 𝑔1, ..., 𝑔𝑞, 𝑔𝑖 : 𝑉2 → R that

associate a real value to each node in 𝐺1 and 𝐺2. This transformation among functions is called

a functional representation of the mapping 𝜏 . In effect, finding an alignment among the nodes of

two graphs corresponds to finding an alignment among functions on those nodes. We use such

functional alignments as a shortcut to node alignments. To get there, we extend the concept of a

functional map [45] from the continuous to the discrete case.

Functional maps. The operator 𝑇F : (𝑉1 × R)→(𝑉2 × R) maps functions 𝑓 on the nodes in 𝐺1 to

functions 𝑔 on the nodes in 𝐺2, i.e. 𝑇F (𝑓 )=𝑓 ◦𝜏−1=𝑔. This operator is linear in the function space,

i.e.,𝑇F (𝑐1 𝑓1 +𝑐2 𝑓2) = (𝑐1 𝑓1 +𝑐2 𝑓2) ◦𝜏−1 = 𝑐1 𝑓1 ◦𝜏−1 +𝑐2 𝑓2 ◦𝜏−1 = 𝑐1𝑇F (𝑓1) +𝑐2𝑇F (𝑓2). In addition, let

𝜙1, ..., 𝜙𝑛 and𝜓1, ...,𝜓𝑛 denote orthogonal bases for the space of functions on𝐺1’s nodes,𝑉1 ×R, and
that on 𝐺2’s nodes, 𝑉2 × R, respectively. Since those functions produce 𝑛-dimensional vectors, we

can represent them as linear combinations of their basis vectors, 𝑓 =
∑𝑛

𝑖=1
𝑎𝑖𝜙𝑖 and 𝑔 =

∑𝑛
𝑗=1

𝑏 𝑗𝜓 𝑗 .

Then, by the linearity of 𝑇F ,

𝑇F (𝑓 )=𝑇F

(
𝑛∑
𝑖=1

𝑎𝑖𝜙𝑖

)
=

𝑛∑
𝑖=1

𝑎𝑖𝑇F (𝜙𝑖 )=
𝑛∑
𝑖=1

𝑎𝑖

𝑛∑
𝑗=1

𝑐𝑖 𝑗𝜓 𝑗=

𝑛∑
𝑗=1

𝑏 𝑗𝜓 𝑗

where𝑇F (𝜙𝑖 ) =
∑𝑛

𝑗=1
𝑐𝑖 𝑗𝜓 𝑗 . It follows that each coefficient𝑏 𝑗 is the dot-product

∑𝑛
𝑖=1

𝑎𝑖𝑐𝑖 𝑗 between

the coefficients (𝑎1, ...., 𝑎𝑛) of functions in 𝐺1 and the coefficients (𝑐1𝑗 , ...., 𝑐𝑛𝑗 ) of the operator 𝑇F .
In conclusion, in order to align real-valued functions on the nodes of two graphs, we need to find a

mapping matrix 𝐶 ∈ R𝑛×𝑛 of coefficients among those functions; such a mapping matrix 𝐶 maps

functions from𝐺1 to𝐺2, even when the ground-truth mapping 𝜏 is unknown. In a nutshell, GRASP

obtains such a mapping matrix 𝐶 for a well-chosen function and applies that 𝐶 to mapping the

indicator function 𝛿 from𝐺1 to𝐺2, thereby constructing a node alignment. The main question we

need to answer is what orthogonal basis and functions we should use to construct our mapping

matrix 𝐶 . The next section answers this question and builds on that answer to devise a solution.

1
Solutions to the problem of aligning graphs with unequal numbers of nodes can rest on solutions to this basic problem

form; we may append zero-entries to the eigenvectors of the smaller graph to obtain the eigenvector size of the larger graph.
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4 SOLUTION
Here, we choose an orthonormal basis and a function, which are, in our judgement, appropriate for

node alignment purposes, and define the complete pipeline of our solution. First, in Section 4.1 we

choose a basis for the functions. In Section 4.2, we choose functions that capture important graph

properties. Then, in Section 4.3, we define a mapping matrix to map functions across graphs. In

Section 4.4, we compute node-to-node alignments from such a map, and Section 4.5 describes a

method to refine the mapping matrix.

4.1 Choice of basis: Normalized Laplacian
As a basis for representing functions as linear combinations of base functions, we use the eigenvec-

tors of the graph’s normalized Laplacian, i.e., the matrix L = 𝐼 − 𝐷− 1

2𝐴𝐷−
1

2 , where 𝐷 a diagonal

degree matrix of node degrees 𝐷𝑖𝑖 =
∑𝑛

𝑗=1
𝐴𝑖 𝑗 and 𝐴 is the graph adjacency matrix; its eigende-

composition is L = ΦΛΦ⊤, where Λ is a diagonal matrix of eigenvalues, {𝜆1, . . . , 𝜆𝑛} ordered by

non-decreasing value, i.e., the graph’s spectrum, which encodes information about communities, de-

gree distribution, and diameter, and Φ is a matrix of corresponding eigenvectors, ΦL = [𝜙1𝜙2 . . . 𝜙𝑛].
The eigenvectors form an orthogonal basis, which we use a standard basis. We use 𝜙 (𝜓 ) to indicate

the eigenvectors of the Laplacian of graph 𝐺1 (𝐺2).

We consider this basis to be suitable, since the eigenvectors of the normalized Laplacian converge

to the eigenfunctions of the Laplace-Berltrami operator [5], which measures the smoothness of

continuous surfaces.

4.2 Choice of function: Heat Kernel
The choice of functions 𝑓𝑖 : 𝑉1 → R, 𝑔𝑖 : 𝑉2 → R, is critical for our method. A poor choice would

be detrimental. A good choice should have the following properties:

Expressiveness. The function should express the graph’s structure. For instance, a constant

function returning the same value for all nodes would not yield a meaningful alignment.

Permutation-invariance. The function should not depend on the node index 𝑖; the indicator

function lacks this property.

Multiscale robustness. The function should robustly capture both local and global structures

(e.g., edges and communities), insensitively to small perturbations.

A function fulfilling these requirements is the time-parameterized heat kernel [55]:

𝐻𝑡 = Φ𝑒−𝑡ΛΦ⊤ =
∑𝑛

𝑗=1
𝑒−𝑡𝜆𝑗𝜙 𝑗𝜙

⊤
𝑗 (1)

where 𝐻𝑡 [𝑖 𝑗 ] measures the flow of heat from node 𝑖 to node 𝑗 at time 𝑡 , as it diffuses from each

node’s neighborhood to the whole graph. We build our model functions over a sequence of time

steps 𝑡 using the diagonal of the heat kernel, which measures the heat flowing back to each node at

time 𝑡 .

The heat kernel expresses multiscale graph structure in a permutation-invariant manner and

is robust to small changes. In the beginning of the diffusion, Equation (1) emphasises large 𝜆,

which correspond to local edge and ego-net properties. As time progresses, smaller eigenvalues get

emphasized, reflecting global graph properties, such as communities.

We build our corresponding functions 𝑓𝑖 , 𝑔𝑖 , from the heat kernel at different time steps 𝑡 ,

as linear combinations of the graph’s Laplacian orthogonal eigenvectors. Let 𝐹 ∈ R𝑛×𝑞 , 𝐹 =

[𝑓1, . . . , 𝑓𝑞] be the matrix containing the diagonals of the heat kernel of𝐺1, 𝐻
𝐺1

𝑡 , over 𝑞 time
2
steps,

𝑓𝑖 =
∑𝑛

𝑗=1
𝑒−𝑡𝑖𝜆 𝑗𝜙 𝑗 ⊙ 𝜙 𝑗 , where ⊙ denotes the element-wise vector product. Likewise, the matrix

2
In our experiments we select 𝑞 = 100 values evenly spaced on the linear scale in the range [0.1, 50].

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:8 Hermanns et al.

𝐺 ∈ R𝑛×𝑞,𝐺 = [𝑔1, . . . , 𝑔𝑞] contains the diagonals of𝐻𝐺2

𝑡 , the heat kernel of𝐺2. While the 𝑞 columns
of 𝐹 and 𝐺 contain the same time-dependent heat-kernel-diagonal functions on the nodes of two

graphs, their 𝑛 rows (i.e., nodes) are not aligned. We need to obtain such a node alignment.

4.3 Mapping matrix
We approximate each function 𝑓𝑖 using only the first 𝑘 eigenvectors, as done, by analogy, on shapes

analysis [5], and thereby calculate the corresponding function matrices 𝐹 and 𝐺 . 𝐹 and 𝐺 can be

thought as coefficient matrices used to produce linear combinations, 𝐹⊤Φ and𝐺⊤Ψ, of the Laplacian
eigenvectors of 𝐺1 and 𝐺2, respectively. With a slight abuse of notation, we denote with Φ and

Ψ the first 𝑘 eigenvectors, hence 𝐹⊤Φ and 𝐺⊤Ψ are in R𝑞×𝑘 . In the projection of the functions on

the first 𝑘 eigenvectors, we would like the corresponding functions to be equal up to a coefficient

matrix 𝐶 ∈R𝑘×𝑘 . In the case of isomorphic graphs, it holds that 𝐹⊤Φ = 𝐺⊤Ψ𝐶
diag(𝑔⊤

1
Ψ)

...

diag(𝑔⊤𝑞 Ψ)



𝑐11

...

𝑐𝑘𝑘

 =


Φ⊤ 𝑓1
...

Φ⊤ 𝑓𝑞

 (2)

Matrix𝐶 is diagonal in the case of isomorphic graphs and deviates from a diagonal form as graphs

diverge from isomorphism; for simplicity, we assume a diagonal 𝐶 , and obtain the diagonal entries

that minimize the 𝐿2-norm difference ∥ · ∥2
2
between the left and rights side of Eq. (2) using the

ordinary least squares method, as in [32]. In Section 4.5 we delve into the case of non-isomorphic

graphs.

4.4 Node-to-node correspondence
We consider the delta function 𝛿𝑖 (·) as corresponding function; these functions yield an 𝑛 × 𝑛
identity matrix. We express such a function as a vector of coefficients, since the vector of 𝛿𝑖 is the

𝑖th row of the heat kernel at 𝑡 = 0:

𝛿𝑖 = 𝐻
𝐺1

𝑖,𝑡=0
=

∑𝑛
𝑗=1

𝜙𝑖 𝑗𝜙 𝑗

The computation for delta functions on 𝐺2 follows equivalently using Ψ in place of Φ. We

may match the coefficient vectors of these corresponding indicator functions, as, ideally, for two

matching nodes 𝑣𝑖 ∈ 𝑉1 and 𝑣
′
𝑗 ∈ 𝑉2, the coefficients of 𝛿𝑖 and 𝛿 𝑗 for Φ and Ψ should be identical.

In particular, the coefficients expressing 𝛿𝑖 as a linear combination of the first 𝑘 eigenvectors are

𝜙𝑖1, . . . , 𝜙𝑖𝑘 . We set Φ⊤ and𝐶Ψ⊤ in R𝑘×𝑛 as coefficient matrices of the delta functions, aligned by𝐶 .

Rows correspond to the first 𝑘 Laplacian eigenvectors, while columns stand for graph nodes, rather

than for time steps of heat diffusion. We need to match coefficient vectors, i.e., columns of Φ⊤ and

𝐶Ψ⊤, to each other. This problem amounts to a linear assignment problem; we apply an off-the-shelf

algorithm therefore, such as nearest neighbor search or Jonker-Volgenant (JV) [22], to obtain

a one-to-one matching between the columns of Φ⊤ and 𝐶Ψ⊤, and hence an alignment of nodes.

GRASP is flexible in that we may choose any matching method.

4.5 Base Alignment
We have hitherto assumed that the graphs to be aligned are isomorphic, hence their eigenvectors

correspond to each other with possible sign changes and an orthogonal diagonal mapping matrix

𝐶 exists. Still, if the graphs are not isomorphic, then their eigenvectors diverge and the diagonal

matrix𝐶 , which we enforce, cannot capture their relationship well. Figure 2 highlights this issue: at

a high level the eigenvectors underline common structures, but they differ at the node level. In this

case, we need to align the two eigenvector bases before we consider aligning corresponding vectors

and, eventually, nodes. We express this base alignment [32] in terms of an alignment matrix𝑀 .

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



GRASP: Scalable Graph Alignment by Spectral Corresponding Functions 111:9

0 10 20 30

0

0.5

1

1.5

2

𝑖

E
i
g
e
n
v
a
l
u
e
𝜆
𝑖

(a) Two graphs spectra

𝜙1 𝜙2 𝜙3

𝜓1 𝜓2 𝜓3

(b) Their first 3 eigenvectors

Fig. 2. We remove red edges from the green graph to obtain the blue graph. Eigenvalues interlace (a);
eigenvectors 𝜙1, 𝜙2, 𝜙3 for green and𝜓1,𝜓2,𝜓3 for blue highlight common structures in their corresponding
entries (b).

Diagonalization.We align the eigenvectors Ψ by a rotation matrix𝑀 so as transform Ψ into Φ:
Ψ̂ = Ψ𝑀 . Since LΨ = ΨΛ, finding Ψ is equivalent to the solution of the quadratic minimization

problem minΨ off(Ψ⊤L2Ψ) s.t. Ψ⊤Ψ = 𝐼 which penalizes the sum of elements off(·) outside of the
diagonal, in order to preserve orthogonality of the basis.

Since the eigenvectors are orthonormal, Ψ⊤Ψ = 𝐼 and for𝐺2’s graph Laplacian eigenvectors Λ2,

Ψ⊤L2Ψ = Ψ⊤ΨΛ2 = Λ2, and𝑀
⊤Ψ⊤L2Ψ𝑀 = 𝑀⊤Λ2𝑀 . Putting the above together, our diagonaliz-

ing term is:

min

𝑀
off(𝑀⊤Λ2𝑀) s.t.𝑀⊤𝑀 = 𝐼

As we are minimizing over orthogonal matrices we can equivalently express the objective above

as a minimization over orthogonal matrices of size 𝑛 × 𝑛, 𝑆 (𝑛, 𝑛):

min

𝑀 ∈𝑆 (𝑛,𝑛)
off(𝑀⊤Λ2𝑀)

Coupling. In addition, the correspondence 𝜏 : 𝐺1 → 𝐺2 so that 𝜙𝑖 ≈ 𝜏 ◦𝜓 translates to

min

Φ
∥𝐹⊤Φ −𝐺⊤Ψ𝑀 ∥2𝐹

where 𝐹 and𝐺 contain each graphs’s corresponding functions. We combine the minimization terms

for diagonalization and coupling, to get the following minimization problem, with regularization

factor 𝜇3:

min

𝑀 ∈𝑆 (𝑛,𝑛)
off(𝑀⊤Λ2𝑀) + 𝜇∥𝐹⊤Φ −𝐺⊤Ψ𝑀 ∥2𝐹 (3)

Given that the eigenvectors of isomorphic graphs match with sign changes, we initialize𝑀 as

a diagonal matrix with 𝑀𝑖𝑖 = 1 if ∥𝐹⊤𝜙𝑖 −𝐺⊤𝜓𝑖 ∥ ≤ ∥𝐹⊤𝜙𝑖 +𝐺⊤𝜓𝑖 ∥, 𝑀𝑖𝑖 = −1 otherwise. Eq. (3)

leads to a manifold optimization problem, which we solve by trust-region methods [2].

Scalability.We avoid computing all eigenvectors 𝑛 × 𝑛, exploiting the fact that we only need the

first 𝑘 eigenvectors for calculating 𝐶 (see Section 4.3). So we only align the first 𝑘 eigenvectors of

Ψ to the first 𝑘 eigenvectors of Φ, i.e Φ̄ = Ψ̂ = Ψ̄𝑀 with Φ̄ = [𝜙1, . . . , 𝜙𝑘 ] and Ψ̄ = [𝜓1, . . . ,𝜓𝑘 ]. Let
Λ̄2 = diag(𝜆1, . . . , 𝜆𝑘 ), the problem in Eq. (3) becomes

min

𝑀 ∈𝑆 (𝑘,𝑘)
off(𝑀⊤Λ̄2𝑀) + 𝜇∥𝐹⊤Φ̄ −𝐺⊤Ψ̄𝑀 ∥2𝐹 (4)

3𝜇 = 0.132 in our experiments
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After obtaining 𝑀 , we use the eigenvectors in Φ̄ and the aligned eigenvectors Ψ̂ = Ψ̄𝑀 in the

next step for the final alignment of nodes. Our approach effectively trades off graph alignment

with a proxy problem of manifold optimization, which we solve with reasonable accuracy and

scalability.

Algorithm 1 GRASP

Require: Graphs 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2)
Params: Eigenvectors 𝑘 , corresponding functions 𝑞, time steps 𝑡 = [𝑡1, . . . , 𝑡𝑞]

// Step 1: Eigendecomposition of Laplacian

1: L1 ← 𝐼 − 𝐷−
1

2

1
𝐴1𝐷

− 1

2

1
, L2 ← 𝐼 − 𝐷−

1

2

2
𝐴2𝐷

− 1

2

2

2: Φ,Λ1 ← eig(L1)
3: Ψ,Λ2 ← eig(L2)

// Step 2: Compute corresponding functions
4: for all 𝑡𝑖 in 𝑡 do

5: 𝑓𝑖 ←
∑𝑛

𝑗=1
𝑒−𝑡𝑖𝜆 𝑗𝜙 𝑗 ⊙ 𝜙 𝑗

6: 𝑔𝑖 ←
∑𝑛

𝑗=1
𝑒−𝑡𝑖𝜆 𝑗𝜓 𝑗 ⊙𝜓 𝑗

7: 𝐹 ← [𝑓1, . . . , 𝑓𝑞]
8: 𝐺 ← [𝑔1, . . . , 𝑔𝑞]

// Step 3: Base alignment
9: Φ̄ = [𝜙1, . . . , 𝜙𝑘 ]
10: Ψ̄ = [𝜓1, . . . ,𝜓𝑘 ]
11: 𝑀 ← min𝑀 ∈𝑆 (𝑘,𝑘) off(𝑀⊤Λ̄2𝑀) + 𝜇∥𝐹⊤Φ̄ −𝐺Ψ̄𝑀 ∥2

𝐹

12: Ψ̂ = Ψ̄𝑀
// Step 4: Calculate mapping matrix

13:

min

[𝑐11,...,𝑐𝑘𝑘 ]⊤










diag(𝑔⊤

1
Ψ̂)

...

diag(𝑔⊤𝑞 Ψ̂)



𝑐11

...

𝑐𝑘𝑘

 −

Φ̄⊤ 𝑓1
...

Φ̄⊤ 𝑓𝑞











2

2

14: 𝐶 ← diag( [𝑐11, . . . , 𝑐𝑘𝑘 ]⊤)
// Step 5: Matching by linear assignment

15: 𝑁 ←Matching of columns of Φ̄⊤ to those of 𝐶Ψ̂⊤

16: return 𝑁

4.6 Our algorithm: GRASP
Putting it all together, GRASP consists of five steps, as Algorithm 1 shows in pseudocode.

Steps 1: Compute eigenvectors. In the first step, calculate the LaplaciansL1,L2 of the two graphs

𝐺1 and𝐺2. Then compute the eigenvectors Φ,Ψ and eigenvalues Λ1,Λ2 by the eigendecomposition

L1 = ΦΛ1Φ
⊤
and L2 = ΨΛ2Ψ

⊤
.

Step 2: Compute corresponding functions. In the second step, calculate the matrices of corre-

sponding functions 𝐹 = [𝑓1, . . . , 𝑓𝑞] and 𝐺 = [𝑔1, . . . , 𝑔𝑞] as diagonals of the heat kernel at time

steps [𝑡1, . . . , 𝑡𝑞] with 𝑓𝑖 =
∑𝑛

𝑗=1
𝑒−𝑡𝑖𝜆 𝑗𝜙 𝑗 ⊙ 𝜙 𝑗 and 𝑔𝑖 equivalently using Ψ.

Step 3: Base alignment. After the corresponding functions are calculated, obtain the base align-

ment matrix 𝑀 by minimizing Eq. 3. Then align the first 𝑘 columns of Ψ, denoted by Ψ̄ to the

corresponding first 𝑘 columns Φ̄ of Φ as Ψ̂ = Ψ̄𝑀 .

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



GRASP: Scalable Graph Alignment by Spectral Corresponding Functions 111:11

Step 4: Calculate mapping matrix. Under the assumption that 𝐶 is a diagonal matrix, calculate

its diagonal elements 𝑐11, . . . , 𝑐𝑘𝑘 by solving the least squares problem:

min

[𝑐11,...,𝑐𝑘𝑘 ]⊤










diag(𝑔⊤

1
Ψ̂)

...

diag(𝑔⊤𝑞 Ψ̂)



𝑐11

...

𝑐𝑘𝑘

 −

Φ̄⊤ 𝑓1
...

Φ̄⊤ 𝑓𝑞











2

2

(5)

We then set 𝐶 = diag(𝑐11, . . . , 𝑐𝑘𝑘 ).
Step 5: Node alignment. To get the final node alignment, we apply a linear assignment algorithm

on the rows of Φ̄ and 𝐶⊤Ψ̂, which hold the indicator function coefficients.

Complexity analysis. The computation of the first𝑘 Laplacian eigenvectors takesO(𝑘 max{|𝐸1 |, |𝐸2 |})
by fast methods for diagonally dominant matrices [30]. Base alignment needs O(𝑘3) to solve the
orthogonality constraint through trust-region methods. The least-squares method runs in O(𝑞 𝑘).
The matching step by JV runs in O(𝑛3). Overall, the O(𝑛3) time factor is dominant.

Connection to Differential Geometry. Our work rests on the theory on Riemannian manifolds [17]

and builds on the analogy between a graph’s Laplacian and the continuous Laplace-Beltrami

operator [55].

5 BOOSTING GRASP
Having introduced GRASP, we observe that most state-of-the-art methods for graph alignment

leverage advances in graph representation learning [19], so that, rather than directly aligning nodes,

these algorithms compute node representations using graph embeddings and align those represen-

tations instead. Building on this observation, we outline a modular framework that characterizes

such methods, and suggest an alternative materialization of the building blocks of GRASP within

this framework.

A naïve approach would embed the two graphs in a common space and align nodes based on

their proximity. Yet, an embedding of one graph is not necessarily comparable to that of another

graph, as the two embedding spaces may be rotated, shifted, or stretched with respect to each other.

To obtain comparable embeddings, we have to align the two embedding spaces.

Section 5.1 introduces the framework of modular graph alignment algorithms to which GRASP

belongs. Then, we propose extensions to GRASP by virtue of its modular structure.

5.1 Modular Graph Alignment
GRASP belongs to a family of graph alignment algorithms that expose a modular structure [34].
Besides GRASP, the recently proposed CONE [7] and its predecessor REGAL [20] are also modular

algorithms. Such algorithms tackle the alignment problem in the following three steps.

Step 1: Embed computes vector representations of nodes. A good representation encodes the

connectivity structure or neighborhood [47]. For GRASP, we choose the spectral embeddings as

described in Section 4.4. CONE uses NetMF [48] embedding and optimizes for node neighborhood

consistency. REGAL proposes embeddings that take into account the node degrees of the node’s

neighborhood.

Step 2: Align alters each graph’s node embeddings, so that corresponding nodes have comparable

embeddings. If the embeddings are computed on each graph individually, only the relations of

nodes within the graph are taken into account. This step accounts for changes in the embeddings

of one graph that potentially alter the node matching across graphs. Modular methods realign the

embedding spaces. GRASP, achieves embedding alignment through the base alignment process
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in Section 4.5. CONE aligns the embeddings by iteratively solving for node correspondence and

embedding space correspondence. REGAL maintains relative distances to a set of anchor nodes so

as to reduce the impact of comparisons based on the absolute position of the embeddings.

Step 3: Assign matches node representations so as to minimize a cost function; this step corre-

sponds to a linear assignment between the nodes in one graph to those nodes in the other graph.

CONE and REGAL employ a nearest neighbor matching scheme, while GRASP implements a variant

of the Hungarian algorithm [22].

Monolithic Alignment Algorithms. In this context it is worth pointing out that two state-of-the-art

graph alignment algorithms, S-GWL [61], and LREA [41] do not fit in the modular framework, as

they tackle the problem in steps and return alignments in a monolithic fashion. In particular:

S-GWL. S-GWL jointly computes embeddings and alignments, expressed through a single objective.

Therefore, it does not allow for substituting one embedding or assignment algorithm for another.

LREA. LREA first computes embeddings of an edge-matching matrix and then matches nodes

among graphs. The alignment step and the assignment steps are intertwined by means of a low-rank

approximation, and are therefore inseparable.

In the following, we take advantage of GRASP’s modularity to devise improvements on it that

change the operations in its modular components.

5.2 PageRank (PR)
We develop an embedding based on PageRank [46]. PR is real-valued vector that represents the

importance of each node, defined as r𝑗 =
∑
(𝑖, 𝑗) ∈𝐸 𝛼

r𝑖
𝑑𝑖
+ (1 − 𝛼)p, where 𝛼 ∈ [0, 1] is the damping

factor and 𝑝𝑖 = 1/𝑛 for each 𝑖 . We generate corresponding functions sampling PR at different 𝛼 values.

In addition, we use Personalized PageRank (PPR), which defines a non-uniform restart probability

vector p. By setting the restart probability to 1 on node 𝑖 and 0 elsewhere, the PageRank score

measures the relevance of other nodes to node 𝑖 . We use PPR in our corresponding function to

measure proximity with respect to other nodes or groups of nodes, thus enriching the embeddings.

First, we partition the nodes into 𝑞 groups of size 𝑡 by their PageRank values; the first group

contains the 𝑡 nodes with the highest PageRank, the second group contains the 𝑡 nodes with

the second-highest PageRank, and so on. Then, we calculate PPR values for each group, with

the personalization vector evenly distributed among the nodes in the group, and set a node’s

corresponding functions as its PPR values for each of the 𝑞 groups. Algorithm 2 describes this

process.

Algorithm 2 PPR-based Corresponding Function

1: Compute PageRank for graph 𝐺 .

2: Sort PageRank values in descending order.

3: Split nodes into 𝑞 groups according to PageRank values.

4: For each group, compute PPR with a p personalized per group.

5: Set the corresp. func. of 𝑣𝑖 as its vector of group-PPR values.

5.3 Iterative Closest Point
The Iterative Closest Point (ICP) method [6] aligns two point clouds, i.e., sets of 𝑛-dimensional

data points. ICP conventionally minimizes the difference between the sets of points by fixing

one of the clouds as the target 𝑋 and iteratively transforming the source cloud 𝑃 . The algorithm

starts with an initial alignment 𝑌 between the points of each cloud and proceeds transforming the
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source points with a mapping matrix that minimizes the least-squared difference between 𝑃 and

the alignment 𝑌 . This matrix is obtained by solving the orthogonal Procrustes problem (OPP) [52].

These steps are repeated until the process converges when the change in mean-squared error (MSE)

after applying each step is below a chosen threshold 𝜖 . Time complexity is dominated by the closest

point algorithm, which is O(𝑛 log𝑛) using a 𝑘-d tree [6]. Algorithm 3 illustrates the method.

Algorithm 3 Iterative Closest Point

1: repeat

2: 𝑘 = 𝑘 + 1.

3: Compute 𝑘-th alignment matrix 𝑌𝑘 = 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡 (𝑃𝑘 , 𝑋 ).
4: Find mapping matrix 𝐶𝑘 = 𝑂𝑃𝑃 (𝑃𝑘 , 𝑌𝑘 ).
5: Rotate 𝑃𝑘 via 𝐶𝑘 to obtain 𝑃𝑘+1 = 𝐶𝑘𝑃𝑘 .

6: until𝑀𝑆𝐸 (𝑃𝑘 , 𝑌𝑘 ) −𝑀𝑆𝐸 (𝑃𝑘+1, 𝑌𝑘+1) < 𝜖

We apply ICP in GRASP to refine the initial node alignment (mapping) matrix 𝐶0 that we obtain

as in Section 4.3.

GRASP
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d
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majority vote

Fig. 3. An example of the voting heuristic in action; GRASP runs four times, adding one eigenvector in each
iteration, from 𝜙1 to 𝜙4. We omit eigenvectors𝜓1, . . . ,𝜓4 for the sake of readability. Each set of eigenvectors
returns a matching from nodes 𝑎, 𝑏, 𝑐, 𝑑 to 𝑎′, 𝑏 ′, 𝑐 ′, 𝑑 ′; on node 𝑎 the match 𝑎–𝑎′ is selected by 3 out of 4
eigenvector sets and chosen as the output match.

Algorithm 4 Voting

1: Pick a number of different 𝑘’s. Compute alignments for all the 𝑘’s.

2: For each node collect all matches (number of different 𝑘’s where this match is chosen).

3: For each node add the most popular matches to the final alignment.

5.4 Voting Heuristic
We observe that the parameter 𝑘 in GRASP that determines the number of eigenvectors used to

approximate each vertex function (Section 4.3) has a significant impact on accuracy when GRASP

is equipped with PageRank, even though it does not affect results significantly in the heat kernel

case. Starting out from this observation, we devise a voting heuristic that exploits this variance. We
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compute alignments for different values of 𝑘 , while using ICP to further align the embeddings in

each iteration, and then treat each match a node obtain in any alignment as a vote. Based on those

votes, we assign matched pairs in an one-to-one manner, by a heuristic called SortGreedy [13] that

sorts matches by their order of frequency among all values of 𝑘 and processes them in that order to

assign each node to its most frequent still-available match. Figure 3 shows a running example of

the voting heuristic. Algorithm 4 shows the procedure.

This voting procedure can be time consuming, as it requires solving the problem once for each

chosen value of 𝑘 . Still, we only need to compute the eigendecomposition of the Laplacian once.

We further save time by only computing the base alignment once for the largest value of 𝑘 and

considering submatrices of the base alignment matrix, each time using only the rows and columns

up to the current value of 𝑘 . This simplification brings a significant speedup with a negligible

accuracy penalty. However, this speedup is more prominent when using the heat kernel rather than

PageRank as corresponding function, as the base alignment minimization runs for significantly

more iterations with the heat kernel.

6 EXPERIMENTS
In this section, we present our thorough experimental study. Table 2 gathers the characteristics of

the 11 real-world network data sets we use; for three of those (Voles, MultiMagna and HighSchool),

we have real-world network variants and ground-truth alignments. On others, unless stated other-

wise, we randomly permute the node order in the original graph and inject noise in both graphs by

deleting edges with probability (noise level) 𝑝 ranging from 0.05 to 0.25. Such noise injection has

been used before [20, 31]; we render it more challenging by deleting edges in both graphs. For each

noise level, we create 5 graphs and report average accuracy in terms of matching ground truth

nodes, as in [20, 31]; note that none of the noisy graphs in a pair is a subset of the other. We run

experiments on an Intel Core i9 10940X 3.3GHz 28-Core CPU with 256GB RAM.

Dataset |𝑉 | |𝐸 | Network type Ground-truth Bipartite

Arenas Email [33] 1 133 5 451 communication ✘ ✘
Facebook-ego [35] 4 039 88 234 social ✘ ✘
CA-AstroPh [35] 17 903 197 031 collaboration ✘ ✘
Hamsterer [33] 2 000 16 097 social ✘ ✘
PPI [6] 3 852 38 705 biological ✘ ✘
Voles [11] 712 2391 proximity ✔ ✘
MultiMagna [59] 1004 8323 biological ✔ ✘
HighSchool [16] 327 5818 proximity ✔ ✘
plantpolrobertson [50] 1 884 15 255 biological ✘ ✔
chowiki [33] 195 352 co-authorship ✘ ✔
tpiwiktionary [33] 861 2 079 co-authorship ✘ ✔

Table 2. Datasets used in our evaluation, |𝑉 | number of nodes, |𝐸 | number of vertices.

Baselines.We compare against the following established baselines for unrestriced graph alignment.

• REGAL [20]: An embedding-based method that utilizes local structural features. In its original

formulation, REGAL allows for one-to-many matchings. For the sake of fairness, we let REGAL

provide one-to-one matchings using the JV linear assignment algorithm, as GRASP does; we

confirmed that, doing so, it fares better than using nearest neighbors.

• Low Rank EigenAlign (LREA) [41]: A spectral method that yields one-to-one matchings via

the minimization of edge mismatches.
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• CONE [7]: A modular method that aligns node embeddings of the input graphs. CONE accepts

any input embedding and returns node alignments by the nearest neighbor algorithms; for the

sake of fairness, we use JV to match the nodes.

• S-GWL [61]: A monolithic alignment method that jointly computes embeddings and alignments

using optimal transport. S-GWL is a scalable variant of GWL [62].

• GRAMPA [14]: Amonolithic alignmentmethod that calculates an alignment based on a similarity

matrix of embeddings derived from eigenvectors of the adjacency matrix.

All codes
4
are in Python. We used available

5
implementations for REGAL, CONE, and S-GWL

and re-implemented GRAMPA and LREA. We evaluate effectiveness based on the accuracy measure:

given a set of ground truth alignments 𝐴𝑔𝑡 and a set of correctly retrieved alignments 𝐴𝑐𝑜𝑟 ⊆ 𝐴𝑔𝑡 ,

accuracy is: 𝑎𝑐𝑐 =
|𝐴𝑐𝑜𝑟 |
|𝐴𝑔𝑡 | .
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Fig. 4. Accuracy on the Facebook and Arenas graphs for different numbers of corresponding functions 𝑞 and
different numbers of eigenvectors 𝑘 for noise levels 5%, 10% and 15%.

6.1 Parameter tuning.
First we study the impact of the parameters 𝑘 and 𝑞 on the quality GRASP achieves, and the core

modular algorithmic choices.

Varying the number of eigenvectors 𝑘 . The number of eigenvectors affects the quality of the

alignment as different eigenvectors capture structures at different scales. The two charts on the left

in Figure 4 show the accuracy of GRASP on Arenas and Facebook, as a function of the number

of eigenvectors at 5% (top line), 10% (middle line), 15% (bottom line) noise level with a fixed

number of corresponding functions 𝑞 = 100. We observe that, in both cases, accuracy starts gently

decreasing after some value of 𝑘 . This behaviour is expected, as eigenvectors corresponding to

larger eigenvalues represent medium-scale to small-scale structures and hence exhibit large noise.

Interestingly, the first few eigenvectors can be computed efficiently with power iteration. For the

sake of efficiency, we settle for a default value of 𝑘 = 20 in subsequent experiments.

Varying the number of corresponding functions. The number of corresponding functions 𝑞

determines the granularity at which we sample the heat kernel (in the default form of GRASP, as

in Algorithm 1) linearly over the time interval [0.1, 50]. The more corresponding functions we

use, the more precise representation of the graph we get, at a cost of computation time. The two

4
Our codes are available at https://github.com/AU-DIS/GRASP.

5
https://github.com/GemsLab/REGAL, https://github.com/GemsLab/CONE-Align, https://github.com/HongtengXu/s-gwl.
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rightmost charts in Figure 4 show how the number of corresponding functions 𝑞 affects accuracy

with a fixed number of eigenvectors 𝑘 = 20. With both datasets, quality increases slightly with 𝑞 at

different noise levels. In subsequent experiments, we set 𝑞 = 100.

6.2 Selecting components
Here, we further exploit the modularity of GRASP (Section 5.1), aiming to select best-performing

modular components. For the sake of a fair comparison, we also examine whether CONE [7] may

benefit from a different choice of embedding other than the default NetMF [48].
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Fig. 5. Accuracy of CONE-Align with different embeddings on the Arenas and Facebook.
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Fig. 6. Accuracy of GRASP (ICP, voting and JV) with PPR, PR, HK and NetMF embeddings.

Boosting Embed.We first investigate the effect of the choice of node embedding. We try out Heat

Kernel (HK), PageRank (PR), Personalized PageRank (PPR), and NetMF. The default embedding

in GRASP is the diagonal of the heat kernel 𝐻𝑡 = Φ𝑒−𝑡ΛΦ⊤ =
∑𝑛

𝑗=1
for varying 𝑡 . Figure 5 shows

the accuracy for CONE on Arenas and Facebook. We observe that NetMF performs best, with

an occasional advantage of HK on Facebook. Figure 6 juxtaposes different node embeddings for

GRASP equipped with ICP, the voting heuristic, and JV. PPR dominates over the other embeddings,

while NetMF displays alternating performance on Arenas and Facebook. Henceforward, we use

GRASP-PPR as the variant of choice. We note that, as in GRASP embeddings are corresponding

functions, thus they affect both Embed and Align.

Boosting Align.Next, we investigate the impact of the enhancements in Section 5 on GRASP-PPR.

Figure 7 shows results with and without Iterative Closest Point (ICP) and Base Alignment (BA). We

observe that the combination of both ICP and BA yields the best performance.
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Fig. 7. Accuracy of GRASP-PPR with ICP and BA.
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Fig. 8. Accuracy of GRASP-PPR with ICP using the SortGreedy voting procedure with different intervals of 𝑘

Figure 8 showcases the performance of voting with different amounts of 𝑘 , using SortGreedy

(SG) [13] both for node assignment while collecting votes and for the final assignment based on

collected votes; other, more computationally demanding choices brought negligible improvements.
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Fig. 9. Accuracy with different assignment algorithms.

Boosting Assign.We also examine the effect of the linear assignment algorithm in more detail. We

try out nearest-neighbor (NN), SortGreedy (SG) [13] and Jonker-Volgenant (JV) on the Hamsterer

and PPI data. Figure 9 shows the results; performance is similar across datasets. SG fares similar to

JV, while yielding better runtime. We observe that GRASP-PPR is sensitive on high noise levels,

independent of the assignment algorithm, but outperforms CONE on lower noise levels.
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Fig. 10. Accuracy of nearest neighbor and JV matching algorithms with and without base alignment.

Cross-examination. Lastly, to further corroborate our findings, we reexamine the combination

of two particular modular choices made in the above, namely: (i) the choice of algorithm for node-

to-node assignment (Section 4.4) and (ii) the usage of base alignment (Section 4.5). Figure 10 shows

that both the JV linear assignment algorithm and base alignment bring a substantial advantage

over their unrefined counterparts consistently across datasets.

In conclusion, based on our inspection of possible enhancements to GRASP, we propose a boosted

variant GRASP, which we dub B-GRASP, which uses PPR embeddings, ICP, the JV assignment

algorithm, base alignment, and voting in the interval [2,39]. In subsequent experiments we evaluate

B-GRASP extensively.
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Fig. 11. Accuracy comparison under synthetic noise.

6.3 Comparison under synthetic noise
We compare GRASP and B-GRASP to three scalable methods, namely REGAL [20], GRAMPA [14]

and LREA [41], as well as two methods we have found to be non-scalable, namely CONE [7] and

S-GWL [61], on real-world data with synthetically generated noise. Figure 11 shows that GRASP

and B-GRASP outperform REGAL, GRAMPA and LREA by a large margin, achieving 76% accuracy

in Arenas and 59% in Facebook with 5% noise, and fare at least as well as REGAL on the CA-AstroPH

graph. B-GRASP outperforms GRASP on Arenas and Facebook, but falls behind S-GWL and CONE

on these graphs. On CA-AstroPh, B-GRASP, CONE and S-GWL exceed 1 hour of runtime and are

not listed in the results for this reason. Overall, we find GRASP to be the top-performing algorithm

among the scalable methods in this experimental, i.e., among GRASP, REGAL, and LREA.
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Fig. 12. Accuracy comparison under real noise.

6.4 Comparison under real noise
Nowwe move on to matching among variants of real-world networks. MultiMagna is a collection of

graphs consisting of a base yeast network and five variations thereof. We match these five variations

to the original. HighSchool and Voles are two evolving proximity networks. We match their latest

version to versions at time steps with 80%, 85%, 90%, and 99% of all edges. Figure 12 presents our

results. We observe that B-GRASP achieves a significant improvement over GRASP as well as LREA

and GRAMPA and the boosted version of REGAL with JV, and fares competitively with respect

to CONE and S-GWL. We conclude that the advantage of GRASP as the best-performing scalable

method (cf. Figure 14 in Section 6.6 regarding scalability), which we observed with synthetic noise,

transfers to real-world alignment problems with moderate noise.
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Fig. 13. Accuracy comparison on bipartite graphs.

6.5 Bipartite Graphs
We now experiment with the three bipartite graphs; Figure 13 presents our results. We observe that

GRASP performs well among scalable methods and B-GRASP obtains a significant performance

boost over GRASP, while GRAMPA also does well. These results demonstrate the capacity of

GRASP and B-GRASP to accommodate this challenging type of graph.

6.6 Scalability

Efficiency vs. number of nodes. In the previous sections, we divided methods into scalable

ones (LREA, GRAMPA and REGAL) and non-scalable ones (CONE and S-GWL). Here, we provide
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experimental evidence for this characterization; we evaluate the running time of all compared

methods on a set of random graphs consisting of 2
10
, 2

12
, 2

14
and 2

16
nodes with an average degree

of 10, generated using the configuration model [42] with a degree distribution following a standard

normal distribution. Figure 14 shows our results on both logarithmic and linear time axis, reporting

results for all experiments that terminated within one hour. We observe that GRASP is positioned

among the scalable methods, delivering results on graphs with 2
14
nodes in less than 500 seconds.

On the other hand, CONE and S-GWL are rendered impractical on large networks.
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Fig. 14. Runtime vs. number of nodes on four random graphs of increasing size.

Ablation study.We now turn our attention to the efficiency of the best-of-breed methods, namely

B-GRASP (i.e., GRASP with PPR, BA, ICP and voting) and CONE with NetMF embeddings. Figure 15

shows the runtime partitioned across the three steps. For B-GRASP, we report precomputation

including Embed and Align, and the time for voting. For CONE, we report Embed, Align and

Assign, separately.While CONE is more efficient than B-GRASP on small graphs, its Align turns out

to be slower than BA and ICP; therefore, B-GRASP outperforms CONE on large graphs, especially

when the number of edges is large, as in the Facebook data set.
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Fig. 15. Time for B-GRASP and CONE with NetMF on four datasets.
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Lastly, we compare the time efficiency of the three most scalable methods, namely GRASP, LREA,

and REGAL, in terms of overall time, as well as time excluding the precomputation of information

that can be reused.

Precomputation. Steps 1–3 of GRASP (Section 4.6) can be performed offline; REGAL also allows

for precomputation of representations. Figure 16 shows the time to compute alignments after

precomputation. Remarkably, GRASP outperforms both REGAL and LREA in the largest CA-

AstroPh data. Figure 17 shows the time including online precomputation; REGAL does not exhibit

any substantial advantage even in the smaller Arenas and Facebook graphs, while GRASP attains,

as we have seen, more accurate results with a negligible increase in time. We obtained similar

results on real-world network matching tasks.
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Fig. 17. Alignment time including precomputation time.

6.7 Impact of degree distribution
The graphs we have used in experiments hitherto approximately follow a power law distribution.

We estimate the power law exponents using the method in [43]. Table 3 lists the results.

Graph Power Law Exponent (𝛾 )
Arenas 1.56

Facebook 1.32

Hamsterster, PPI 1.45

Voles 1.64

MultiMagna 1.46

HighSchool 1.36

Table 3. Estimated power law exponents.

As a direction for further study, we examine the impact of the power-law exponent on alignment

accuracy. We generate three synthetic power-law graphs with approximate power-law coefficient 𝛾

1.71, 2.34 and 3.35. Figure 18 shows the performance of GRASP with PPR and JV vs. CONEwith JV as

a function of noise. GRASP outperforms CONE and achieves nearly 100% accuracy on graphs with

low power-law exponent, which is consistent with its good performance in the previous experiments.
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However, the performance of GRASP drops on graphs with highly skewed distribution as the noise

level grows, while CONE with JV manages those cases. This finding illustrates that further work is

needed to achieve high alignment accuracy on highly skewed power-law graphs.
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Fig. 18. Accuracy of GRASP with PPR and JV vs. CONE with JV assignment on generated power law graphs.

7 CONCLUSION
We proposed GRASP, a novel modular graph alignment method that matches graphs utilizing the

eigenvectors of their Laplacian matrices. We establish a functional correspondence among the

pre-aligned eigenvectors of the two graphs, extending the shape-analysis concept of functional

maps and then extract a linear assignment among matrix columns. The functional correspondences

we employ capture multi-scale graph properties, and lead to competitive alignment quality over

the state-of-the-art scalable methods for graph alignment across noise levels and real-world graph

types, while the noise levels we test are higher than anything used in previous studies. To our

knowledge, this is the first work to apply a functional alignment primitive to graph alignment.

We expounded upon GRASP’s modular design, which allows us to exchange components and

develop improved versions thereof. Such an improved version, B-GRASP, delivers alignments that

perform competitively compared to far less scalable state-of-the-art methods. We noted that some

previous work could also benefit from their modularity, and provide the same advantage to those

for the sake of a fair comparison. Eventually, compared to the only scalable algorithms on graphs

with more than 2
14
nodes, GRASP delivers the best quality of alignments.

In the future, we plan to extend our method to partial correspondences among graphs, to the

alignment of hierarchical graph summaries [24, 51], and towards flexible definitions of subgraph

isomorphism, including the case of matching graphs with unequal numbers of nodes.
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