
Notable Characteristics Search through Knowledge Graphs
Davide Mottin

1
, Bastian Grasnick

2
, Axel Kroschk

2
, Patrick Siegler

2
, Emmanuel Müller

1

Hasso Plattner Institute

1
first.last@hpi.de

2
first.last@student.hpi.de

ABSTRACT
Query answering routinely employs knowledge graphs to assist

the user in the search process. Given a knowledge graph that

represents entities and relationships among them, one aims at

complementing the search with intuitive but effective mecha-

nisms. In particular, we focus on the comparison of two or more

entities and the detection of unexpected, surprising properties,

called notable characteristics. Such characteristics provide intu-

itive explanations of the peculiarities of the selected entities with

respect to similar entities. We propose a solid probabilistic ap-

proach that first retrieves entity nodes similar to the query nodes

provided by the user, and then exploits distributional properties

to understand whether a certain attribute is interesting or not.

Our preliminary experiments demonstrate the solidity of our

approach and show that we are able to discover notable charac-

teristics that are indeed interesting and relevant for the user.

1 INTRODUCTION
Search engines have greatly evolved from simple indexes of pages

to complex systems that are able to predict user intentions and

answer queries on a variety of data sources. One way to im-

prove the search quality is by using a knowledge graph that

represents entities (e.g., Angela Merkel, Germany) as nodes and

relationships between them (e.g., leaderOf) as edges in a graph.

The great expressiveness of knowledge graphs can complement

the search with more flexible search paradigms. Assume for in-

stance a scholar who requires to know some non-trivial facts

about Angela Merkel and Emmanuel Macron with respect to

other country leaders. It would be interesting to discover for

instance that Angela Merkel studied Physics as opposed to most

of the other leaders, and that she has no children. We call this

fact a notable characteristic, to remark the unexpected and non-

trivial aspect of the discovery. To this end, we propose a novel

type of search called notable characteristics search that allows the

retrieval of such facts from a set of input query entities. Discov-

ering notable characteristics constitutes a ground for targeted

analyses of products (e.g., comparing two cameras effectively) in

electronic commerce or microorganisms in biological networks

(e.g., two influence bacteria) with respect to a set of similars. As

a consequence, in all the cases in which a knowledge graph is

available, the discovery of notable characteristics becomes an

expressive and powerful search type for any user, from experts

and practitioners to novice users.

In our setting, we assume the user provides a set of query
nodes to be compared and the algorithm finds a set of notable

characteristics of these nodes. Given a node, a property is a

relationship with other nodes (e.g., leaderOf). A characteristic or

property is notable, if it deviates from what one would expect for

the kind of nodes (e.g., presidents) into consideration. To the best

of our knowledge, this is the first study of automatic discovery

of notable characteristics (or properties).

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

studied

hasChild

studied

Mariano

Physics

Query

Mariya
Yecaterina

hasChild

LawPhilosophy

hasChild

Juan

Context

Xi	Mingze

studied

Figure 1: An example knowledge graph, the query (Merkel
and Macron), and the discovered context nodes (Putin, Xi
Jinping, and Rajoy). The fact that Merkel and Macron do
not have children is a notable characteristic.

The discovery of notable characteristics entails two challenges.

First, given the set of query nodes we need to compare them to

only those nodes that are similar to some extent. Second, we need

to select only those properties that are significantly different

from the one expressed in the query. Note that tackling the first

challenge is very important, as the comparison of the query

nodes has to be performed with a set of similar nodes, which we

call the context of the query. Consider the naïve approach that

returns notable characteristics simply by comparing the query

nodes and assume that the user provides “Angela Merkel” and

“Theresa May” as query. This is a counter example for the naïve

direct comparison, as it will not return the gender as a notable

characteristic. Both query nodes are female, however only in

comparison with other presidents this becomes an interesting

fact. On the other extreme, selecting all the nodes in the graph

as context will mislead the analysis towards non-relevant nodes.

Take our example of “Angela Merkel” and “Emmanuel Macron”.

A naïve selection of all humans will not work as context, since

the gender characteristic is not notable among all persons.

It is crucial to provide a thorough context selection to prevent

the above cases. Therefore, we introduce the discovery of context
nodes, i.e., nodes similar to the query nodes. An example of the

proposed approach is depicted in in Figure 1. To this end, we

devise a method that exploits metapaths [12] and random walks

for context discovery. We also propose a generic framework

that efficiently discover notable characteristics through a novel

probabilistic approach based on distribution comparison.

Our contributions are summarized as follows: (1) We formal-

ize the problem of notable characteristics search given a set of

query nodes as input. (2)We show how to effectively compute

metapaths to find the context nodes in knowledge graphs. (3)We

introduce a probabilistic approach to discover notable charac-

teristics given a query node set. (4) We experimentally evaluate

our context selection approach through a user study, and show

evidence of our discovered notable characteristics and the real

time performance of the proposed algorithms.

2 NOTABLE CHARACTERISTICS SEARCH
We are given a set A of node labels and a set L of edge labels.

A knowledge graph is a directed graph G : ⟨V, E,ϕ,ψ ⟩, where
V is a set of nodes, E ⊆ V ×V is a set of edges, ϕ : V 7→ A,

ψ : E 7→ L are node and edge labeling functions, respectively.

For simplicity, we assume that everything is modeled as rela-

tionships and nodes. This is the case for attributes such as birth

date: we assume that the date itself is a node connected with a

birthdate relationship. Additionally, we assume that for every

edge e ∈ E with type ψ (e) = l exists a reverse edge e−1 with

ψ (e−1) = l−1 to model cases such as presidentOf and hasPresi-
dent. The above assumptions do not change the generality of the

methods but simplify the notation and the analysis.

We aim at discovering notable characteristics expressed as a

set of input query nodes (entities) in relation to their similars.

This intuitive definition entails two questions: (1) what is the set
of similars? (2) what are the notable characteristics?

Given a knowledge graph G : ⟨V, E,ϕ,ψ ⟩, the set of input
nodes, referred to as query set or query in short, is any setQ ⊆ V .

The query is manually provided by the user and therefore con-

sidered reasonably small (i.e., ≤10 elements). The first question

concerns the definition of a set of similars referred in this work

as context nodes. We assume the existence of a similarity function
σ : V × 2

V 7→ R that assigns a high score to nodes that are

similar to those in the query set and low otherwise. Given such

similarity, the context are the top-k most similar nodes.

Definition 2.1 (Context set). Given a knowledge graph G :

⟨V, E,ϕ,ψ ⟩, a query set Q ⊆ V , a similarity function σ : V ×

2
V 7→ R, and a parameter k , the context set (or simply context)

is a set C ⊆ V such that Q ∩ C = ∅, |C | = k , and for each

nc ∈ C ∧ n ∈ V \ (Q ∪C),σ (n,Q) ≤ σ (nc ,Q).
The second question concerns the notable characteristics. The

characteristics are attributes or relationships of a specific node

since they implicitly represent a signature of the node itself. We

assume the existence of a generic discrimination function δ : L ×

2
V × 2

V 7→ R+
0
, which represents how a specific characteristic

is discriminative or unexpected comparing two set of nodes. The

discrimination function returns 0 if the value is not discriminative.

We are now ready to define a notable characteristic.

Definition 2.2 (Notable characteristic). Given a knowledge graph
G : ⟨V, E,ϕ,ψ ⟩, a queryQ ⊆ V , a contextC ⊆ V , and a discrim-

ination function δ : L × 2
V × 2

V 7→ R+
0
a notable characteristic

is a relationship l ∈ L|Q∪C such that δ (l ,Q,C) , 0.

The notation L|Q∪C = {l | ∃x ∈ Q ∪ C,y ∈ V s.t. (x ,y) ∈

E ∧ψ (x ,y) = l} denotes the set of edge labels restricted to those

found in the edges directly connected to Q ∪C .
The general problem we aim to solve is efficiently returning

the notable characteristics, given a query, a similarity function

and a discrimination function.

Problem 1 (Notable characteristics search). Given a knowl-
edge graph G : ⟨V, E,ϕ,ψ ⟩, a query Q ⊆ V , a similarity function
σ : V×2V → R and a discrimination function δ : L×2V×2V 7→

R+
0
, find the set of notable characteristics.

3 A PROBABILISTIC SOLUTION
The problem entails the definition of appropriate σ (similarity)

and δ (discrimination) functions. Section 3.1 introduces a graph-

principled solution based on random walks for retrieving context

nodes, while Section 3.2 describes a probabilistic approach to

effectively discover notable characteristics.

3.1 Finding the context
Given the query Q , we define a similarity function σ to retrieve

a set of context nodes. Although many notions of similarity func-

tions have been developed, such as SimRank [4], none seems

suitable to our case since they compare two nodes at the time. We

devise an algorithm that takes into account edge labels and com-

bines the advantages of random walk and metapath approaches.

In the random walk model, a walker chooses one of the out-

going edges from a node with uniform probability. Motivated by

information theoretic notions applied to graphs [10], instead of

uniform probability, we favor edge labels with lower frequency.

We define El = {(i, j) ∈ E|i, j ∈ V,ψ (i, j) = l}, the set of edges
having label l ∈ L. The frequency of a label l is the fraction of

l-labeled edges with respect to the total number of edges. The

weighted adjacency matrix is a |V|×|V| matrix, where for each

node i and j ,Ai j = 1− |El |/|E | if (i, j) ∈ E andAi j = 0 otherwise.

The Personalized PageRank is the vector p=cÃp + (1 − c)v,
where Ãi j=Aji/

∑
k Ajk , c is the damping factor, and v is vector

called personalization vector. In our experiments the damping

factor is 0.8, in line with previous works. We compute p starting

from each node in the query to retrieve the k nodes with the

highest score. This is done by setting vn=1/|Q | for each n∈Q . We

refer to this baseline as RandomWalk.

The PageRank disregards which type of relationships are in-

volved in the random walk, discarding the valuable information

encoded in the surrounding of the query nodes. To this end, we

adopt the notion of metapath [8, 12] which generalizes the con-

cept of path. A metapath for a path ⟨n1, ...,nt ⟩,ni ∈ V, 1 ≤ i ≤ t
is a sequence ⟨ϕ(n1),ψ (n1,n2), ...,ψ (nt−1,nt),ϕ(nt)⟩ that alter-
nates node and edge labels along the path.

We mine metapaths as follows. We sample a node in V \Q
uniformly and run a random walk until a query node is reached.

The sequence of edge labelsm encountered in the random walk

is added to the set of metapaths M along with the number of

times c(m) the same metapath has been found so far. It has been

proved that random walks are effective in mining metapaths [7].

Once the metapaths are retrieved, we compute a score for each

node based on the probability that some metapath starting from

a query node ends in such node. Given the set of metapathsM ,

{n
m
⇝ n′} is the set of paths from node n to n′ matching metapath

m∈M . The score of a node n′∈V \Q with respect to n∈Q is

σ (n′,Q) =
∑

m∈M,n∈Q

|{n
m
⇝ n′}|

|{n
m
⇝ n′′ |n′′ ∈ V \Q}|

Pr(m) (1)

Pr(m) = c(m)/
∑
m∈M c(m) is the probability of choosing metap-

athm. Intuitively, σ gives a higher score to nodes that are reach-

able through frequent metapaths connecting the query nodes or

connected through many of these metapaths. Hence, nodes that

are reached from infrequent metapaths will have a low score. We

refer to this method as ContextRW.

3.2 Comparing the distributions
We revise the definition of notable characteristics in probabilistic

terms. Assume we have computed the distribution of values for

each characteristic (i.e., edge label) for both query and context

nodes found with the method in Section 3.1. Such distribution of

the context represents the expected, or normal behavior, to be

evaluated against the notable behaviour of the query set.

Formally, for each characteristic l ∈ L, we consider two vec-

tors in order to evaluate its notability. The first represents the

count of the node labels (e.g., France) connected to a specific edge

label (e.g., bornIn). This expresses information about the values

in the nodes and can be used to identify cases where different

attribute values are relevant. For instance, in the query in Figure 1

all people are European, while in the context half are Europeans

and half Asian. We refer to these vectors as instance vectors
Iq (l ,C,Q) = (x1,x2, ...,xt),Ic (l ,C) = (y1,y2, ...,yt)

where xi and yi are the number of occurrences of node i at
the end of an edge labeled l from a node in Q and C , respec-
tively. In the example in Figure 1, Iq (studied,C,Q) = (1, 1, 0),

Ic (studied,C) = (0, 0, 3), where the positions in the vector indi-

cate (Physics, Philosophy, Law). Note that both vectors have the

same size, so xi is zero if i appears only in the context.

Similarly, the second vector represents aggregates over the

number of occurrences of a specific edge label in the context,

which are useful to represent the characteristic “Angela Merkel”

has no child, instead of listing the children names. We refer to

these vectors as cardinality vectors.
Kq (l ,C,Q) = (x1,x2, ...,xt),Kc (l ,C) = (y1,y2, ...,yt)

where xi and yi are the number of times a node in Q and C
respectively has i edges labeled l .

Both vectors can be built by iterating through the nodes in

each set and counting the respective occurrences. For a given

l ∈ L, this results in two scores δI and δK . The final score δ is

the maximum score between δI and δK .

δ (l ,C,Q) = max(δI (l ,C,Q),δK (l ,C,Q)) (2)

Many measures have been proposed in statistics to compare

two vectors in terms of distributions, such as the Kullback-Leibler

(KL) divergence, the χ2 test, and Earth Mover’s Distance (EMD).

However, most of them draw specific assumptions, such as non-

zero probabilities, or normality, that are not fulfilled in our case

since IandK have no natural ordering and no distance-function

between the values. Therefore, we resort to a more natural multi-

nomial test that better expresses the relationship between our

distributions. The multinomial test assumes that a set of observa-

tions (the query) is drawn from a multinomial distribution (the

context). If the values observed in the query are drawn from

the multinomial, than the hypothesis cannot be rejected and the

characteristic is marked as non-notable; otherwise, the success

of the test denotes that the characteristic is notable.

Assume we have a random variable XN ,π ∼ Mult(N ,π), with
parameters N and distribution π . We normalize Ic and Kc to

express the probability distributions Îc = Ic/| |Ic | |1 and K̂c =

K̂c/| |K̂c | |1. The significance probability is

Prs (XN ,π = x) =
∑

y :Pr(XN ,π =y) ≤ Pr(XN ,π =x)

Pr(XN ,π = y)

where Prs(π ,x) is the probability of x or any equally or less likely

outcome being drawn from the probability distribution
1
. A differ-

ence in distributions is considered significant if the hypothesis is

rejected with probability p > 0.95.

MT(π ,x) =

{
1 − Prs(XN ,π = x) if Prs(...) ≤ 0.05

0 otherwise

Finally, δ id defined as δI (l ,C,Q) = MT(Îc (l ,C),Iq (l ,C,Q))

and δK (l ,C,Q) = MT(K̂c (l ,C),Kq (l ,C,Q)).

4 EXPERIMENTAL EVALUATION
We experimentally evaluate our approach on different datasets

and show the impact of the parameters on the final results.

Datasets:We perform experiments on two real datasets.

• YAGO is a large knowledge graph based onWikipedia, Wordnet

and Geonames, with 3.3M nodes, 27M edges, 366K node types

and 38 edge labels. We downloaded YAGO 2.5
2
and converted

node attributes to edges and attribute values to node labels.

• LMDB3: LinkedMDB is a knowledge graph for the movie do-

main, extracted from the Internet Movie Database (IMDB), with

739K nodes, 1.6M edges, and 18 edge types.

Experimental Setup: We implemented our solution in Java 1.8,

and ran the experiments on a Intel i5-4210U 1.7 GHz machine

1
In case of large N , an approxiamte Montecarlo sampling is performed.

2
http://resources.mpi-inf.mpg.de/yago-naga/yago2.5

3
https://datahub.io/dataset/linkedmdb

with 12GB RAM. All datasets are loaded into Apache Jena triple

store. Along our ContextRW described in Section 3.1 for context

selection and FindNC for notable characteristics identification

on top of ContextRW, we implement RandomWalk, a baseline

for context selection based on Personalized PageRank (see Sec-

tion 3.1) computed through the power iteration method with 10

iterations and c = 0.8.

4.1 Evaluating Context selection
We compare the effectiveness of ContextRW with the baseline

RandomWalk within different topics. Since no ground truth

for finding context nodes given a set of query nodes were avail-

able, we generated context nodes via CrowdFlower (https://www.

crowdflower.com) for 15 query sets in three domains, namely

politicians, actors, and movie contributors. For each domain we

manually determined 6 entities belonging to the domain and

generated queries of increasing size (up to 6 entities). We asked

34 workers to provide a ranked list of related entities given the

query, resulting in 7’650 entities. From such entities we removed

those mentioned only once and obtained 36 to 76 entities per

query that are mapped into YAGO.

Context size |C |. Context size affects the quality of the results,

since more context nodes potentially lead to better recall but

worse precision. Figure 2a compares RandomWalk and our Con-

textRW in terms of F1 score at different |C |.In all cases, Contex-

tRW performs up to four times better than the RandomWalk,

vindicating the effectiveness of our metapath constrained ran-

dom walk in finding context nodes, while RandomWalk mostly

returns nodes that are close to the query nodes, but semantically

irrelevant. Quality does not improve for |C | > 100 due to a loss in

precision. We also experience a lower variance for ContextRW

that exploits metapaths for guiding the search.

Query size |Q |.We analyze the performance of the algorithms

varying the query size |Q |. Figure 2 shows that ContextRW

improves in result quality whenmore query nodes are considered,

which means that our method capture semantic relationships

between the nodes. On the contrary, RandomWalk is not affected

by the size of the query disregarding metapaths.

Figure 3a reports the time to compute the context, showing

that RandomWalk is on average up to two orders of magnitude

slower than ContextRW, for |Q | = 5. Expectedly, ContextRW

is faster with larger queries (<20s comprising the database time),

since the chance to end up in a query node is larger.

Figure 2c reports the maximum F1 of ContextRW at increas-

ing |Q |, comparing YAGO and LMDB datasets within the actors
domain. Unsurprisingly, ContextRW performs moderately bet-

ter than YAGO in LMDB due to the specificity of the dataset;

however, YAGO result testifies the generalization ability of Con-

textRW in larger, more complex datasets.

Number of paths |M |. The ContextRW algorithm depends on

the number of paths. Figure 2d shows the F1 score in relation to

the context size and the number of paths. The number of paths

does not affect the score; however, as shown in Figure 3b the time

increases as the length of the metapaths (and also the number,

not reported) increases. Therefore, a reasonable choice for the

number of metapaths |M | and maximum length is 5.

4.2 Distribution Comparison
Test cases.We show preliminary evidence of the effectiveness of

FindNCwith respect to the RandomWalk baseline for context re-

trieval with the multinomial test. The test case in Figure 4a shows

the instance distribution of the query Q = {Georдe Clooney,

http://resources.mpi-inf.mpg.de/yago-naga/yago2.5
https://datahub.io/dataset/linkedmdb
https://www.crowdflower.com
https://www.crowdflower.com

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400

F₁
	

Context	size	(|C|)

ContextRW
RandomWalk

(a) Context size |C |

0

0.05

0.1

0.15

0.2

0.25

2 3 4 5 6

F1
	

Query	size	(|Q|)

ContextRW	(|C|=100) RandomWalk	(|C|=50)
ContextRW	(|C|=50) RandomWalk	(|C|=100)

(b) Query size |Q |

|Q | max F1 |C |
2 YAGO 0.23 23

LMDB 0.30 101

3 YAGO 0.2 107

LMDB 0.25 122

4 YAGO 0.19 130

LMDB 0.24 124

5 YAGO 0.25 162

LMDB 0.26 198

6 YAGO 0.22 285

LMDB 0.25 139

(c) Dataset comparison

Number of paths (|M |)
|C | 5 10 15 20

50 0.15 0.16 0.13 0.15

100 0.22 0.21 0.21 0.21

150 0.22 0.23 0.23 0.23

200 0.22 0.22 0.22 0.22

(d) Number of paths |M |

Figure 2: Average quality in terms of F1 varying parameters |C |, |q |, and |M | in YAGO dataset.

1

10

100

1000

10000

1 2 3 4 5

TI
m
e	
(s
)

Random	Walk
ContextRW

(a) Query size |Q |

20

40

60

80

5 10 15 20

Ti
m
e	
(s
)

|Q|=2 |Q|=3 |Q|=4
|Q|=5 |Q|=6

(b) Maximummetapath length

Figure 3: Average time (s) in YAGO dataset.

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili
ty

Context
Query

(a) Created label in YAGO

0

0.2

0.4

0.6

0.8

1 Random	Walk ContextRW Threshold

(b) Method comparison

Figure 4: Test cases for the actors domain and 5 query
nodes. A “C” in the labels denotes cardinality distributions

Brad Pitt ,Leonardo DiCaprio, Scarlett Johansson, Johnny Depp}
over the top-100 context nodes for the created edge label. The

created edge label is absent in 43% cases (represented as None
instance), whereas all the other values are equally likely with

0.66% chances. The query presents a different distribution, with

one actor without created labels and all the others with a dif-

ferent value. This clear deviation from the context is a notable

characteristic by the multinomial test.

In the second test case, not reported due to space limits, we test

the query {Douдlas Adams,Terry Pratchett} against the top-30
nodes as context. Our solution identified the edge influences as
a notable characteristic. This is because the two authors in the

query influenced an actor that was influenced by only 3 in total.

Algorithm comparison. Figure 4b compares FindNC with RW-

Mult, with query {George Clooney, Brad Pitt, Leonardo DiCaprio,

Scarlett Johansson and Johnny Depp}. All items above the thresh-

old, depicted as a dashed line, are considered not interesting

(δ = 0). The random walk selects mostly famous people in the

movie business; hence, actedIn that connects actors with movies,

is rare in the context but common in the query.However, this is

clearly not correct and our FindNC algorithm marks actedIn as

uninteresting. Similarly, hasWonPrize shows a significant differ-
ence between the two algorithms, as winning a prize is common

for actors (75%), but not so in the rather mixed random walk

context (only 25%). The chart also shows that the significance

level of the multinomial test can be used as a parameter to obtain

the desired “interestingness” level. Choosing 0.1 would include

the owns relationship as a notable characteristic, revealing that

Brad Pitt is (according to the dataset) the only relevant actor to

own a company (Plan B Entertainment).

5 RELATEDWORK
Finding notable characteristics reminisces the problem of anom-

aly detection in attributed graphs [1]; yet, it is fundamentally

different, for it does not provide explanations on the nodes re-

turned as anomalies, nor such approaches are query-driven.

Node comparison measures. Node similarities, typically de-

fined in terms of neighbors, is a centerpiece for community de-

tection, classification, and link prediction. Structural equivalence,

such as SimRank [4] defines two nodes similar if the neighbors are

similar. Random walk approaches, such as Personalized PageR-

ank [2] and HITS [5] can also be used to find structurally similar

nodes. However, node similarities cannot readily explain differ-

ences among query nodes and other similar nodes.

Seed set expansion. Seed set expansion, or example-basedmeth-

ods, refers to methods that ask the user to provide an initial set

of entities or structures and retrieve similar nodes. Seed nodes

are used to discover groups of nodes with similar characteris-

tics [6] exploiting the specificity of each node in the seed set. Like-

wise, seed-based approaches are used to discover dense graph

regions [3, 11]. Although these methods provide multiple groups

of nodes they cannot properly explain the characteristics and the

differences among them; in general, they do not directly compare

the query nodes with the others.

Relevant path summarization. Our problem is connected to

the discovery of metapaths between nodes [8, 12]. Methods have

been proposed to automatically learn metapaths from a given

seed set [9]. However, metapaths cannot express the lack of an

edge (e.g., Angela Merkel has no children), nor they cannot detect

notable characteristics: Being born in the same place is notable,

only if similar people are born in different places.

REFERENCES
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anom-

aly detection and description: a survey. DAMI 29, 3 (2015), 626–688.
[2] Soumen Chakrabarti. 2007. Dynamic personalized pagerank in entity-relation

graphs. In WWW. 571–580.

[3] Aristides Gionis, Michael Mathioudakis, and Antti Ukkonen. 2015. Bump

hunting in the dark: Local discrepancy maximization on graphs. In ICDE.
1155–1166.

[4] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context

similarity. In KDD. 538–543.
[5] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.

JACM 46, 5 (1999), 604–632.

[6] Isabel M Kloumann and Jon M Kleinberg. 2014. Community membership

identification from small seed sets. In KDD. 1366–1375.
[7] Sangkeun Lee, Sanghyeb Lee, and Byoung-Hoon Park. 2015. PathMining: A

Path-Based User Profiling Algorithm for Heterogeneous Graph-Based Recom-

mender Systems.. In FLAIRS Conference. 519–523.
[8] Sangkeun Lee, Sungchan Park, Minsuk Kahng, and Sang-goo Lee. 2012.

Pathrank: a novel node ranking measure on a heterogeneous graph for rec-

ommender systems. In CIKM. 1637–1641.

[9] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda

Zhang. 2015. Discovering meta-paths in large heterogeneous information

networks. InWWW. 754–764.

[10] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2016. Exemplar queries: a newway of searching. VLDB J. 25, 6 (2016), 741–765.
[11] Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo,

and Nicolas Kourtellis. 2015. The Minimum Wiener Connector Problem. In

SIGMOD. 1587–1602.
[12] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Path-

sim: Meta path-based top-k similarity search in heterogeneous information

networks. PVLDB 4, 11 (2011), 992–1003.

	Abstract
	1 Introduction
	2 Notable characteristics search
	3 A probabilistic solution
	3.1 Finding the context
	3.2 Comparing the distributions

	4 Experimental Evaluation
	4.1 Evaluating Context selection
	4.2 Distribution Comparison

	5 Related Work
	References

