
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

What if Neural Networks had SVDs?

Anonymous Authors1

Abstract

Various Neural Networks employ time-
consuming matrix operations like matrix
inversion. Many such matrix operations are
faster to compute given the Singular Value
Decomposition (SVD). Techniques from (Zhang
et al., 2018; Mhammedi et al., 2017) allow using
the SVD in Neural Networks without computing
it. In theory, the techniques can speed up matrix
operations, however, in practice, they are not fast
enough. We present an algorithm which is up to
27× faster than a previous approach, fast enough
to speed up several matrix operations.

1. Introduction
What could be done if the Singular Value Decomposition
(SVD) of the weights in a Neural Network was given?
Time-consuming matrix operations, such as matrix inversion
(Hoogeboom et al., 2019), could be computed faster. Vari-
ous Neural Networks employ such matrix operations, which
often increase training time. Speeding up time-consuming
matrix operations is thus very desirable.

For example, matrix inversion of d × d matrices could be
computed and multiplied with a vector inO(d2) time instead
of O(d3). Furthermore, Spectral Normalization (Miyato
et al., 2018), often used by Generative Adversarial Networks
(Goodfellow et al., 2014), could be done exactly in O(d)
time instead of approximated in O(d2). how

Both matrix operations take less time given the SVD. How-
ever, computing the SVD takes O(d3) time, which is no
faster than computing either matrix operation. In Neural
Networks, computing the SVD can be circumvented by the
SVD reparameterization from (Zhang et al., 2018), which,
in theory, allows speeding up both matrix operations.

However, in practice, we find that the previous approach
to SVD reparameterization rarely attains any speed-ups for
matrix operations on GPUs. This might not be surprising
since the technique was not developed to speed up matrix
operations. The difference in theory and practice occurs
because the technique alters the forward pass of a fully
connected layer to be highly sequential.

100 200 300 400 500 600 700 800
Size of matrix d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e
in

 se
co

nd
s

27.1× faster

4.3×
2.7×

Sequential pytorch.inverse Ours

Figure 1. Time consumption of different approaches to matrix in-
version in Neural Networks. The plot compares our algorithm
against the sequential algorithm from (Zhang et al., 2018) and
standard matrix inversion. Section 4.1 compares multiple matrix
operations and a parallel algorithm from (Zhang et al., 2018).

On a d× d weight matrix, the technique entails the compu-
tation of O(d) sequential inner products, which is ill-fit for
parallel hardware like GPUs. In practice, we find that the
O(d) sequential inner products take longer to compute than
both matrix inversion and Spectral Normalization.

We introduce a novel algorithm that remedies the issue with
sequential inner products. Our algorithm retains the same
time complexity as the sequential algorithm from (Zhang
et al., 2018) while reducing the number of sequential op-
erations. On a mini-batch of size m > 1, our algorithm
performs O(d/m+m) sequential matrix-matrix operations
instead of O(d) sequential vector-vector operations.

In practice, our algorithm is faster than all algorithms from
(Zhang et al., 2018), fast enough to speed up several matrix
operations. For example, for matrix inversion in Neural Net-
works, our algorithm is up to 27× faster than the sequential
algorithm from (Zhang et al., 2018) and up to 4.3× faster
than standard matrix inversion, see Figure 1.

The remainder of the paper is structured as follows. In Sec-
tion 2, we demonstrate the many benefits of SVDs for Neural
Networks and outline the SVD technique from (Zhang et al.,
2018). In Section 3, we present our new parallel algorithm
and prove desirable theoretical guarantees. In Section 4, we
present experiments, followed by related work in Section 5
and a conclusion in Section 7.

Code: see ’pythoncode.zip’ attached to our submission.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

What if Neural Networks had SVDs?

2. Background
2.1. Fast Matrix Operations Using SVD

This subsection describes how several matrix operations,
commonly used by Neural Networks, can be computed
faster if the SVD is known. We consider a square weight ma-
trix since 4 out of the 5 operations we consider are undefined
for rectangular matrices. The SVD of a real square matrix
W ∈ Rd×d is W = UΣV T where Σ ∈ Rd×d is a diago-
nal matrix with Σii ≥ 0 and U, V ∈ Rd×d are orthogonal
matrices, i.e., UT = U−1 and V T = V −1.

Some of the matrix operations concern the special case
where W = WT . In this case, the SVD simplifies to W =
UΣUT , however, the values of Σii can be negative.

Lemma 1 states five well-known linear algebra results. Each
result allows fast computation of a different matrix operation
when the SVD is known. After the lemma, we describe how
each matrix operation relates to Neural Networks.

Lemma 1. Let W have a SVD W = UΣV T , it holds that

1. Determinant. |det(W)| =
∏d
i=1 Σii.

2. Inverse. W−1 = V Σ−1UT .

3. Largest singular value. maxdi=1 Σii.

4. Matrix exponential. If W = WT then W = UΣUT ,

eW :=

∞∑
k=0

1

k!
W k = UeΣUT ,

where eΣ is diagonal and (eΣ)ii = eΣii . Similar is
true when WT = −W .

5. Cayley map. If W = WT then W = UΣUT ,

C : = (I −W)(I +W)−1

= U(I − Σ)(I + Σ)−1UT .

Similar is true when WT = −W .

Proof. See the Supplementary Material 8.1.

We now show how each result in Lemma 1 relates to the
computation of matrix operations in Neural Networks.

Result 1 and 2 allow the computation of matrix determinant
and matrix inversion in O(d) time. Both operations are used
by Normalizing Flows (Hoogeboom et al., 2019). Com-
puting these operations with standard operations like PY-
TORCH.INVERSE(..) and PYTORCH.SLOGDET(..) (Paszke
et al., 2019) take O(d3) time. Previous work suggests using
the PLU and QR decomposition to circumvent the O(d3)
standard operations (Kingma & Dhariwal, 2018; Hooge-
boom et al., 2019). We discuss the advantages of the SVD
approach in Section 5.

Result 3 allows the exact computation of the largest singular
value in O(d) time. The largest singular value is used for
Spectral Normalization (Miyato et al., 2018). It is usually
approximated in O(d2r) time by running r rounds of the
power iteration algorithm. Similar speed-ups are possible
when W is rectangular.

Result 4 and 5 allow the computation of the matrix expo-
nential and the Cayley map in O(d) time. Both operations
are used by (Casado, 2019), computed in O(d3) by Padé
approximation and PYTORCH.SOLVE(..), respectively.

See Table 1 for a summary.

Similar bounds can be obtained for weight decay, pseudo-
inverse, condition number and compression by low-rank
approximation, see Supplementary Material 8.1.

Remark. All operations from Lemma 1 can be computed
in O(d) time, faster than computing a single matrix-vector
multiplication O(d2). For example, if we compute W−1x
for x ∈ Rd the time consumption is dominated by the multi-
plication and not the matrix inversion.

2.2. The SVD Technique

This subsection describes how (Zhang et al., 2018) allows
using the SVD of the weights matrices in Neural Networks
without computing them, and in particular, how this ap-
proach is limited by the computation of sequential inner

Table 1. Overview of the matrix operations from Lemma 1, comparing the time complexity of each operation with and without the SVD.
The SVD of W ∈ Rd×d is W = UΣV T and r is the number of rounds used for the power iteration algorithm.

Operation Complexity Example Use Cases

Name Given SVD No SVD With SVD

Determinant
∏d
i=1 Σii O(d3) O(d) (Hoogeboom et al., 2019)

Inverse V Σ−1UT O(d3) O(d) (Hoogeboom et al., 2019)
Largest singular value maxdi=1 Σii O(d2r) O(d) (Miyato et al., 2018)
Matrix Exponential UeΣUT O(d3) O(d) (Casado, 2019)
Cayley map U(I−Σ)(I+Σ)−1UT O(d3) O(d) (Casado, 2019)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

What if Neural Networks had SVDs?

products. Let W = UΣV T be the SVD of a weight ma-
trix W . The goal is to allow gradient descent updates of
W while preserving the SVD. Consider updating U,Σ, V a
small step η ∈ R in the direction of gradients∇U ,∇Σ,∇V .

Σ′ = Σ− η∇Σ, U ′ = U − η∇U , V ′ = V − η∇V .

While Σ′ remains diagonal, both U ′ and V ′ are in general
not orthogonal, which is needed to preserve the SVD. To
this end (Zhang et al., 2018) suggest using a technique from
(Mhammedi et al., 2017) which decomposes an orthogonal
matrix as a product of d Householder matrices H1, . . . ,Hd:

U =

d∏
i=1

Hi Hi = I − 2
viv

T
i

||vi||22
vi ∈ Rd. (1)

Householder matrices satisfy several useful properties. In
particular, the matrix U remains orthogonal under gradi-
ent descent updates vi = vi − η∇vi (Mhammedi et al.,
2017). Furthermore, all products of Householder matrices
are orthogonal, and any d × d orthogonal matrix can be
decomposed as a product of d Householder matrices (Uhlig,
2001). Householder matrices thus allow us to perform gra-
dient descent over orthogonal matrices, which allows us to
preserve the SVD of W during gradient descent updates.

Multiplication. One potential issue remains. The House-
holder decomposition might increase the time it takes to
multiply UX for a mini-batch X ∈ Rd×m during the for-
ward pass. Consider computing

UX = H1 · · · (Hd−1(Hd ·X)). (2)

The product UX can then be computed by d Householder
multiplications. If done sequentially, as indicated by the
parenthesis in Equation (2), each Householder multiplica-
tion can be computed in O(dm) time (Zhang et al., 2018).
All d multiplications can then be done in O(d2m) time.
Therefore, the Householder decomposition does not increase
the time complexity of computing UX .

Unfortunately, the O(d2m) time complexity comes at the
cost of multiplying each Householder matrix sequentially,
and each Householder multiplication entails computing an
inner product, see Equation (1). The multiplication UX
then requires the computation of O(d) inner products se-
quentially. Such sequential computation is slow on parallel
hardware like GPUs, much slower than normal matrix mul-
tiplication. To exploit GPUs (Zhang et al., 2018) suggests
using a parallel algorithm that takes O(d3) time, but this is
no faster than computing the SVD.

We are thus left with two options: (1) a O(d2m) sequential
algorithm and (2) a O(d3) parallel algorithm. The first op-
tion is undesirable since it entails the sequential computation
of O(d) inner products. The second option is undesirable

since it asymptotically takes the same time as the SVD, i.e.,
asymptotically, we might as-well compute the SVD. In prac-
tice, both algorithms usually achieve no speed-up for the
matrix operations from Lemma 1, see Section 4.2.

Our main contribution is a novel parallel algorithm that
resolves the issue with sequential inner products without in-
creasing the time complexity. Our algorithm takes O(d2m)
time but performs O(d/m + m) sequential matrix-matrix
operations instead of O(d) sequential vector-vector oper-
ations (inner products). In practice, our algorithm is up
to 6.2× faster than the parallel algorithm and up to 27.1×
faster than the sequential algorithm, see Section 4.1.

Mathematical Setting. Time complexity is computed in
the RAM model. The number of sequential matrix-matrix
and vector-vector operations is simply counted. We count
only once when other sequential operations can be done in
parallel. For example, processing v1, ..., vd/2 sequentially
while, in parallel, processing vd/2+1, ..., vd sequentially, we
count d/2 sequential vector-vector operations.

The Orthogonal Constraint. The SVD technique per-
form gradient descent over orthogonal matrices. This is
possible with Householder matrices, however, other tech-
niques exists. For example, techniques using the matrix
exponential and the Cayley map (Casado, 2019; Li et al.,
2020). For d × d matrices both techniques spend O(d3)
time, no faster than computing the SVD.

3. A Parallel Algorithm
3.1. Forward Pass

Our goal is to create an O(d2m) algorithm with few sequen-
tial operations that solves the following problem: Given
an input X ∈ Rd×m with d > m > 1 and Householder
matrices H1, ...,Hd compute the output A = H1 · · ·HdX .
For simplicity, we assume m divides d.

Since each Hi is a d× d matrix, it would take O(d3) time
to read the input H1, ...,Hd. Therefore, we represent each
Householder matrixHi by its associated Householder vector
vi such that Hi = I − 2viv

T
i /||vi||22.

A simplified version of our algorithm proceeds as follows:
divide the Householder productH1 · · ·Hd into smaller prod-
ucts P1 · · ·Pd/m so each Pi is a product of m Householder
matrices:

Pi = H(i−1)·m+1 · · ·Hi·m i = 1, ..., d/m. (3)

All d/m products Pi can be computed in parallel. The out-
put can then be computed by A = P1 · · ·Pd/mX instead of
A = H1 · · ·HdX , which reduces the number of sequential
matrix multiplications from d to d/m.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

What if Neural Networks had SVDs?

This algorithm computes the correct A, however, the time
complexity increases due to two issues. First, multiplying
each product Pi withX takesO(d2m) time, a total ofO(d3)
time for all d/m products. Second, we need to compute all
d/m products P1, ..., Pd/m in O(d2m) time, so each prod-
uct Pi must be computed in O(d2m/(d/m)) = O(dm2)
time. If we only use the Householder structure, it takes
O(d2m) time to compute each Pi, which is not fast enough.

Both issues can be resolved, yielding an O(d2m) algorithm.
The key ingredient is a linear algebra result that dates back
to 1987. The result is restated in Lemma 2.
Lemma 2. (Bischof & Van Loan, 1987) For any m House-
holder matrices H1, ...,Hm there exists W,Y ∈ Rd×m st.

I − 2WY T = H1 · · ·Hm.

Both W and Y can be computed by m sequential House-
holder multiplications in O(dm2) time.

Proof. See (Bischof & Van Loan, 1987) Method 2.

For completeness, we provide pseudo-code in Algorithm 1.
Theorem 1 states properties of Algorithm 1 and its proof
clarify how Lemma 2 solves both issues outlined above.

Algorithm 1 Forward Computation

Input: X ∈ Rd×m and H1, ...,Hd ∈ Rd×d.
Output: A1 = P1 · · ·Pd/mX = H1 · · ·HdX .

// Step 1
for i = d/m to 1 do in parallel

Compute Yi,Wi ∈ Rd×m such that . O(dm2)
Pi = I − 2WiY

T
i

by using Lemma 2.
end for

// Step 2
Ad/m+1 = X.
for i = d/m to 1 do sequentially
Ai = Ai+1 − 2Wi(Y

T
i Ai+1) . . O(dm2)

end for
return A1.

Theorem 1. Algorithm 1 computesH1 · · ·HdX inO(d2m)
time with O(d/m+m) sequential matrix multiplications.

Proof. Correctness. Each iteration of Step 2 computes

Ai = Ai+1 − 2Wi(Y
T
i Ai+1)

= PiAi+1. By Lemma 2

Therefore, at termination, A1 = P1 · · ·Pd/mX . In Step 1,
we used Lemma 2 to compute the Pi’s such that A =
H1 · · ·HdX as wanted.

Time complexity. Consider the for loop in Step 1. By
Lemma 2, each iteration takes O(dm2) time. Therefore, the
total time of the d/m iterations is O(dm2d/m) = O(d2m).

Consider iteration i of the loop in Step 2. The time of the
iteration is asymptotically dominated by both matrix mul-
tiplications. Since Ai+1, Xi and Yi all are d×m matrices,
it takes O(dm2) time to compute both matrix multiplica-
tions. There are d/m iterations so the total time becomes
O(dm2d/m) = O(d2m).

Number of Sequential Operations. Each iteration in Step
2 performs two sequential matrix multiplications. There are
d/m sequential iterations which gives a total of O(d/m)
sequential matrix multiplications.

Each iteration in Step 1 performs m sequential Householder
multiplications to construct Pi, see Lemma 2. Since each
iteration is run in parallel, the algorithm performs no more
than O(d/m+m) sequential matrix multiplications.

Remark. Section 3.2 extends the techniques from this
section to handle gradient computations. For simplicity,
this section had Algorithm 1 compute only A1, however, in
Section 3.2 it will be convenient to assume A1, ..., Ad/m
are precomputed. Each Ai = Pi · · ·Pd/mX can be saved
during Step 2 of Algorithm 1 without increasing asymptotic
memory consumption.

3.2. Backwards Propagation

This subsection extends the techniques from Section 3.1
to handle gradient computations. Our goal is to create
an O(d2m) algorithm with few sequential operations that
solves the following problem: Given A1, . . . , Ad/m+1,
P1, ..., Pd/m and ∂L

∂A1
for some loss function L, compute

∂L
∂X and ∂L

∂v1
, ..., ∂L∂vd , where vj is a Householder vector st.

each Householder matrix is Hj = I − 2vjv
T
j /||vj ||22.

Since each Pi is a d × d matrix, it would take O(d3/m)
time to read the input P1, ..., Pd/m. Therefore, we represent
each Pi by its WY decomposition Pi = I − 2WY T .

On a high-level our algorithm has two steps.

Step 1. Sequentially compute ∂L
∂A2

, ∂L
∂A3

, ..., ∂L
∂Ad/m+1

by

∂L

∂Ai+1
=

[
∂Ai
∂Ai+1

]T
∂L

∂Ai
= PTi

∂L

∂Ai
(4)

This also gives the gradient wrt. X since X = Ad/m+1.

Step 2. We then use ∂L
∂A1

, ..., ∂L
∂Ad/m

from Step 1 to com-

pute the gradient ∂L
∂vj

for all j. This problem can be split
into d/m subproblems, which can be solved in parallel, one
subproblem for each ∂L

∂Ai
.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

What if Neural Networks had SVDs?

P T
d/m P T

i P T
1P T

d/m−1

∂L
∂A1····

∂L
∂A2

(
∂L
∂Ai

)(
∂L

∂Ai+1

)
∂L

∂Ad/m−1

∂L
∂Ad/m

∂L
∂X = ∂L

∂Ad/m+1

X · · ··
Ad/m+1 Ad/m Ad/m−1 Ai+1 Ai A2 A1

Pd/m Pi P1Pd/m−1

(a) Step 1: Sequential part of Algorithm 2.

· ··

···

ĤT
m ĤT

j ĤT
1

Âm Âj+1 Âj Â2 Â1 = Ai

∂L
∂Â1

=
(
∂L
∂Ai

)
∂L
∂Â2

∂L
∂Âj

∂L
∂Âj+1

∂L
∂Âm

(
∂L

∂Ai+1

)
= ∂L

∂Âm+1

Ai+1 = Âm+1

(b) Step 2: The i’th subproblem in Algorithm 2.

Figure 2. Computational graph of Step 1 and the i’th subproblem in Step 2 from Algorithm 2.

For completeness, we state pseudo-code in Algorithm 2,
which we now explain with the help of Figure 2.

Figure 2a depicts a computational graph of Step 1 in Algo-
rithm 2. In the figure, consider ∂L

∂A1
and PT1 , which both

have directed edges to a multiplication node (denoted by ·).
The output of this multiplication is ∂L

∂A2
by Equation (4).

This can be repeated to obtain ∂L
∂A2

, ..., ∂L
∂Ad/m+1

.

Step 2 computes the gradient of all Householder vectors ∂L
∂vj

.
This computation is split into d/m distinct subproblems that
can be solved in parallel. Each subproblem concerns ∂L

∂Ai

and the product Pi, see line 10-12 in Algorithm 2.

To ease notation, we index the Householder matrices of Pi
by Pi = Ĥm · · · Ĥ1. Furthermore, we let Âm+1 := Ai+1

and Âj := ĤjÂj+1. The notation implies that Â1 =

Ĥ1 · · · ĤmÂm+1 = PiAi+1 = Ai. The goal of each sub-
problem is to compute gradients wrt. the Householder vec-
tors v̂m, ..., v̂1 of Ĥm, ..., Ĥ1. To compute the gradient of
v̂j , we need Âj+1 and ∂L

∂Âj
, which can be computed by:

Âj+1 = Ĥ−1
j Âj = ĤT

j Âj (5)

∂L

∂Âj+1

=

[
∂Âj

∂Âj+1

]T
∂L

∂Âj
= ĤT

j

∂L

∂Âj
(6)

Figure 2b depicts how Â2, ..., Âm+1 and ∂L

∂Â2
, ..., ∂L

∂Âm+1

Given Âj+1 and ∂L

∂Âj
, we can compute ∂L

∂v̂j
as done in

(Zhang et al., 2018; Mhammedi et al., 2017). For com-
pleteness, we restate the needed equation in our notation,
see Equation (7). Let a(l) be the l’th column of Âj+1 and
let g(l) be the l’th column of ∂L

∂Âj
. The sum of the gradient

over a mini-batch of size m is then:

− 2

||v̂j ||22

m∑
l=1

(v̂Tj a
(l))g(l) + (v̂Tj g

(l))a(l) (7)

− 2

||v̂j ||22
(v̂Tj a

(l))(v̂Tj g
(l))v̂j

Theorem 2 states properties of Algorithm 2.

Algorithm 2 Backwards Computation

1: Input: A1, ..., Ad/m+1, P1, ..., Pd/m and ∂L
∂A1

.

2: Output: ∂L
∂X and ∂L

∂vk
for all k whereHk = I−2

vkv
T
k

||vk||22
.

3:
4: // Step 1
5: for i = 1 to d/m do sequentially
6: ∂L

∂Ai+1
= PTi

∂L
∂Ai

eq. (4). . O(dm2)

7: end for
8:
9: // Step 2

10: for i = 1 to d/m do in parallel
11: Let ∂L

∂Â1
=
(
∂L
∂Ai

)
.

12: To ease notation, let Pi = Ĥm · · · Ĥ1.
13: for j = 1 to m do
14: Compute Âj+1,

∂L

∂Âj
, eqs. (5) and (6). . O(dm)

15: Compute ∂L
∂v̂j

using Âj+1,
∂L

∂Âj
, eq. (7). . O(dm)

16: end for
17: end for
18: return ∂L

∂X = ∂L
∂Ad/m+1

and ∂L
∂vk

for all k = 1, ..., d.

Theorem 2. Algorithm 2 computes ∂L
∂X and ∂L

∂v1
, ..., ∂L∂vd in

O(d2m) time with O(d/m+m) sequential matrix multipli-
cations.

Proof. See the Supplementary Material 8.2.

3.3. Extensions

Trade-off. Both Algorithm 1 and Algorithm 2 can be ex-
tended to take a parameter k that controls a trade-off be-
tween total time complexity and the amount of parallelism.
This can be achieved by changing the number of House-
holder matrices in each product Pi from the mini-batch size
m to an integer k ∈ {2, ..., d − 1}. The resulting algo-
rithms takes O(d2k+d2m) time, O(d2m/k) space and has
O(d/k + k) sequential matrix multiplications. This exten-
sion has the practical benefit that one can try different values
of k and choose the one that yields superior performance on
a particular hardware setup.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

What if Neural Networks had SVDs?

Convolutional Layers. So far, we have considered the
SVD technique for matrices which corresponds to fully con-
nected layers. The matrix case extends to convolutions by,
e.g., 1 × 1 convolutions (Kingma & Dhariwal, 2018) or
invertible periodic convolutions (Hoogeboom et al., 2019).
The SVD technique can be used for such convolutions with-
out increasing the time complexity. On an input with height
h and width w our algorithm performs O(d/m + mhw)
sequential matrix multiplications instead of the O(d) se-
quential inner products of the previous algorithm.

Recurrent Layers. The SVD technique was developed
for Recurrent Neural Networks (RNNs) (Zhang et al., 2018).
Let r be the number of recurrent applications of the RNN.
Our algorithm performs O(d/m + rm) sequential matrix
operations instead of the O(d) sequential inner products.

4. Experiments
This section contains two experiments. Section 4.1 com-
pares the running time of our algorithm against alternatives.
Section 4.2 shows our algorithm speeds up matrix opera-
tions. To simulate a realistic machine learning environment,
we performed all experiments on a standard machine learn-
ing server using a single NVIDIA RTX 2080 Ti.

4.1. Comparing Running Time

This subsection compares the running time of our algorithm
against four alternative algorithms. We compare the time
all algorithms spend on gradient descent with a single or-
thogonal matrix, since such constrained gradient descent
dominates the running time of the SVD technique.

We first compare our algorithm against the parallel and
sequential algorithm from (Zhang et al., 2018), all three
algorithms rely on the Householder decomposition. For
completeness, we also compare against approaches that does
not rely on the Householder decomposition, in particular,
the matrix exponential and the Cayley map (Casado, 2019).
See Supplementary Material 8.3 for further details.

We measure the time of a gradient descent step with a weight
matrix W ∈ Rd×d and a mini-batch X ∈ Rd×m, where
m = 32 and d = 1 · 64, 2 · 64, ..., 48 · 64. We ran each
algorithm 100 times, and we report mean time µ with error
bars [µ − σ, µ + σ] where σ is the standard deviation of
running time over the 100 repetitions.

Figure 3 depicts the running time on the y-axis, as the size
of the d× d matrices increases on the x-axis. For d > 64,
our algorithm is faster than all previous approaches. At
d = 64 our algorithm is faster than all previous approaches,
except the parallel algorithm. Previous work employ sizes
d = 192 in (Kingma & Dhariwal, 2018) and d = 784 in
(Zhang et al., 2018).

500 1000 1500 2000 2500 3000
Size of matrix d

0.00

0.05

0.10

0.15

0.20

Ti
m

e
in

 se
co

nd
s

6.2× faster

Our Algorithm
Parallel
Sequential
Cayley
Exponential

Figure 3. Running time of different algorithms for d× d matrices.
Our algorithm is fastest when d > 64. The sequential algorithm
from (Zhang et al., 2018) crashed when d > 448.

500 1000 1500 2000 2500 3000
Size of matrix d

0.0

5.0

10.0

15.0

20.0

25.0

Re
la

tiv
e

Im
pr

ov
em

en
t Our Algorithm

Parallel
Sequential
Cayley
Exponential

Figure 4. Improvement of our algorithm relative to previous algo-
rithms, i.e., the mean time of a previous algorithm divided by the
mean time of our algorithm.

Figure 4 depicts how much faster our algorithm is relative
to the previous algorithms, i.e., the mean time of a previous
algorithm divided by the time of our algorithm, which we
refer to as relative improvement. For d > 500, the relative
improvement of our algorithm increase with d.

4.1.1. ADDITIONAL INSIGHTS

Householder Decomposition. At d = 448 our algorithm
is roughly 25× faster than the sequential algorithm. Our
algorithm is faster with d = 3072 than the sequential algo-
rithm with d = 448. Previous work like (Hoogeboom et al.,
2019; van den Berg et al., 2018; Mhammedi et al., 2017)
use the Householder decomposition with the sequential al-
gorithm. Since our algorithm computes the same thing as
the sequential algorithm, it can speed-up their computation
without degrading performance in any way.

Implementations of Previous Algorithms. For the ma-
trix exponential and the Cayley map we used the open-
source implementation1 from (Casado, 2019). For the paral-
lel and sequential algorithm we used the open-source imple-
mentation2 from (Zhang et al., 2018).

1https://github.com/Lezcano/expRNN
2https://github.com/zhangjiong724/spectral-RNN

https://github.com/Lezcano/expRNN
https://github.com/zhangjiong724/spectral-RNN

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

What if Neural Networks had SVDs?

4.2. Using the SVD to Compute Matrix Operations

This subsection investigates whether the matrix operations
from Lemma 1 achieves speed-ups in practice. The matrix
operations are usually used during the forward pass of a
Neural Network, changing the subsequent gradient compu-
tations. Therefore, we measure the sum of the time it takes
to compute the matrix operation, the forward pass and the
subsequent gradient computations.

For example, with matrix inversion, we measure the time it
takes to compute the matrix operation Σ−1, the forward pass
W−1X = V Σ−1UTX and the subsequent gradient compu-
tation wrt. U,Σ, V,X . The measured time is compared with
a standard approach like PYTORCH.INVERSE (Paszke et al.,
2019). Again, we measure the time of the matrix operation
PYTORCH.INVERSE(W), the forward pass W−1X , and the
subsequent gradient computation wrt. W,X .

We use the following standard approaches, inspired by
(Kingma & Dhariwal, 2018) and (Casado, 2019):

Determinant: PYTORCH.SLOGDET(W)
Inverse: PYTORCH.INVERSE(W)
Cayley: PYTORCH.SOLVE(I - W, I + W)

Exponential: Padé Approximation.

We run the SVD technique with three different algorithms:
our algorithm, the sequential and the parallel algorithm
from (Zhang et al., 2018). For each matrix operation, we
consider matrices V,Σ, U,W ∈ Rd×d and X ∈ Rd×M ,
where m = 32 and d = 1 · 64, 2 · 64, ..., 48 · 64. We repeat
the experiment 100 times, and report the mean time µ with
error bars [µ− σ, µ+ σ] where σ is the standard deviation
of the running times over the 100 repetitions.

We plot the time of the SVD technique for three different
algorithms: ours, parallel and sequential. To avoid clutter,
we plot only the time of our algorithm for the matrix opera-
tion it is slowest to compute, and the time of the previous
algorithms for the matrix operations they were fastest to
compute. See Supplementary Material 8.4 for details.

Figure 5 depicts the measured running time on the y-axis
with the size of the d× d matrices increasing on the x-axis.
Each matrix operation is plotted as a dashed line, and the dif-
ferent algorithms are plotted as solid lines. In all cases, our
algorithm is faster than the standard approach. For example,
with d = 768, our algorithm is 3.1× faster than the Cayley
map, 4.1× faster than the matrix exponential, 2.7× faster
than inverse and 3.5× faster than matrix determinant. At
d = 768, the parallel algorithm provides a speed up for only
one operation, a 1.1× speed-up for the matrix exponential.
The sequential algorithm is not fast enough to speed up any
matrix operation.

0 500 1000 1500 2000 2500 3000
Size of matrix d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
in

 se
co

nd
s

Our Algorithm
Parallel
Sequential
Cayley
Exponential
Inverse
Determinant

Figure 5. Running time of matrix operations. Solid lines depict
approaches which use the SVD technique and dashed lines depict
standard approaches like PYTORCH.INVERSE.

4.2.1. ADDITIONAL INSIGHTS

Previous work on Matrix Determinant. Previous work
suggested speeding up matrix determinant by using the PLU
decomposition (Kingma & Dhariwal, 2018) and the QR de-
composition (Hoogeboom et al., 2019). Our algorithm can
speed up the QR decomposition, which (Hoogeboom et al.,
2019) introduced to fix a limitation of the PLU decomposi-
tion. This is possible because the QR decomposition uses
an orthogonal matrix, which, in (Hoogeboom et al., 2019),
is done by using the Householder decomposition. See the
Related Work in Section 5 for details.

Spectral Normalization. Previous work (Miyato et al.,
2018) uses the power iteration algorithm to approximate the
largest singular value of a matrix W . Power iteration takes
an initial random vector v0, and iteratively computes powers
vi+1 = Wvi/||Wvi|| until a sufficiently good approxima-
tion is reached. In Neural Networks, v0 is usually initialized
by the result from the previous mini-batch update. In this
case, one power iteration usually gives a sufficiently good
approximation. We found the increased multiplication time
caused by the SVD technique incurs a larger overhead than
one power iteration, i.e., no speed-up.

Pay For One, Get Spectral Normalization For Free.
The time consumption of the SVD technique is dominated
by the forward pass and the subsequent gradient computa-
tions. For example, when d = 3072, computing Σ−1 takes
just 0.7% of the time it takes to compute V Σ−1V TX . If
we also compute Spectral Normalization, we only need to
compute Σ/maxi Σii, with a negligible increase in total
computation time. The same is true for matrix determi-
nant

∏
i Σii, weight decay

∑
i Σ2

ii and condition number
maxi Σii/mini Σii.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

What if Neural Networks had SVDs?

5. Related Work
The Householder Decomposition. The Householder de-
composition of orthogonal matrices has been used in much
previous works, for example, (Tomczak & Welling, 2016;
Mhammedi et al., 2017; Zhang et al., 2018; van den Berg
et al., 2018; Hoogeboom et al., 2019). Previous work typi-
cally use a type of sequential algorithm that performs O(d)
sequential inner products. To circumvent the resulting long
computation time on GPUs, previous work often suggest
limiting the number of Householder matrices, which limits
the expressiveness of the orthogonal matrix, introducing a
trade-off between computation time and expressiveness.

Our algorithm takes the same asymptotic time as the sequen-
tial algorithm, however, it performs less sequential matrix
operations, making it up to 27× faster in practice. Since
our algorithm computes the same output as the previous se-
quential algorithms, it can be used in previous work without
degrading the performance of their model. In particular, our
algorithm can be used to either (1) increase expressiveness
at no additional computational cost or (2) speed up previous
applications at the same level of expressiveness.

SVDs in Neural Networks. The authors of (Zhang et al.,
2018) introduced a technique that provides access to the
SVD of the weights in a Neural Network without computing
the SVD. Their motivation for developing this technique
was the exploding/vanishing gradient issue in RNNs. In
particular, they use the SVD technique to force all singular
values to be within the range [1± ε] for some small ε.

We point out that their technique, in theory, can be used
to speed up matrix operations, and, furthermore, that their
algorithms are too slow to speed-up most matrix operations
in practice. To mitigate this problem we introduce a new
algorithm that is more suitable for GPUs, which allows us
to speed up several matrix operations.

Different Orthogonal Parameterizations. The SVD
technique by (Zhang et al., 2018) uses the Householder
decomposition to perform gradient descent with orthogo-
nal matrices. Their work was followed by (Golinski et al.,
2019) that raises a theoretical concern about the use of
Householder decompositions. Alternative approaches based
on the matrix exponential and the Cayley map have desir-
able provable guarantees, which currently, it is not known
whether the Householder decomposition possesses. This
might make it desirable to use the matrix exponential or the
Cayley map together with the SVD technique from (Zhang
et al., 2018). However, previous work spend O(d3) time to
compute or approximate the matrix exponential and the Cay-
ley map. These approaches are thus undesirable for SVD
since they asymptotically take the same time as computing
the SVD.

Normalizing Flows. Normalizing Flows (Dinh et al.,
2015) is a type of generative model that, in some cases
(Kingma & Dhariwal, 2018; Hoogeboom et al., 2019), en-
tails the computation of matrix determinant and matrix in-
version. (Kingma & Dhariwal, 2018) propose to use the
PLU decomposition W = PLU where P is a permutation
matrix and L,U are lower and upper triangular. This allow
the determinant computation in O(d) time instead of O(d3).
(Hoogeboom et al., 2019) point out that a fixed permutation
matrix P limits flexibility. To fix this issue, they suggest us-
ing the QR decomposition where R is a rectangular matrix
and Q is orthogonal. They suggest making Q orthogonal
by using the Householder decomposition which our algo-
rithm can speed up. Alternatively, one could use the SVD
decomposition instead of the QR or PLU decomposition.

6. Code
During implementation of our algorithm, we found that
Python did not provide an adequate level of parallelization.
We therefore implemented our algorithm in CUDA to fully
utilize the parallel capabilities of GPUs. To make the code
widely accessible, we wrote accompanying Python code
that allows using our algorithm in PyTorch (Paszke et al.,
2019). For example: code that has a fully connected Neural
Network which use ’nn.Linear’ simply needs to change
’nn.Linear’ to ’LinearSVD’ after importing our code.

Further details can be found in ’pythoncode.zip’ attached
with our submission. We plan to publish a revised version
of the code on Github to ease future use of our algorithm.

7. Conclusion
We showed that, in theory, the techniques from (Zhang et al.,
2018; Mhammedi et al., 2017) allow speeding-up matrix
operations. However, in practice, we demonstrated that the
techniques are not fast enough on GPUs for moderately
sized use-cases. We proposed a novel algorithm that reme-
dies the issues with both algorithms from (Zhang et al.,
2018), which is up to 27× faster than the previous sequen-
tial algorithm. Our algorithm introduces no loss of quality,
it computes the same thing as the previous algorithms, just
faster. Our algorithm has two uses:

• It can speed up the algorithms from (Zhang et al.,
2018), so much, that it is fast enough to speed up ma-
trix inversion, matrix determinant, matrix exponential
and the Cayley map.

• It can speed up previous work that employ the House-
holder decomposition as done in e.g. (Tomczak &
Welling, 2016; Mhammedi et al., 2017; van den Berg
et al., 2018; Hoogeboom et al., 2019).

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

What if Neural Networks had SVDs?

References
Bischof, C. and Van Loan, C. The WY Representation for

Products of Householder Matrices. SIAM Journal on
Scientific and Statistical Computing, 1987.

Casado, M. L. Trivializations for Gradient-Based Optimiza-
tion on Manifolds. In NeurIPS, 2019.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-Linear In-
dependent Components Estimation. In ICLR (Workshop),
2015.

Golinski, A., Lezcano-Casado, M., and Rainforth, T. Im-
proving Normalizing Flows via Better Orthogonal Param-
eterizations. In ICML Workshop on Invertible Neural
Networks and Normalizing Flows, 2019.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
Reversible Residual Network: Backpropagation Without
Storing Activations. In NIPS, 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative Adversarial Nets. In NIPS, 2014.

Hoogeboom, E., van den Berg, R., and Welling, M. Emerg-
ing Convolutions for Generative Normalizing Flows. In
ICML, 2019.

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow
with Invertible 1x1 Convolutions. In NeurIPS. 2018.

Li, J., Li, F., and Todorovic, S. Efficient Riemannian Op-
timization on the Stiefel Manifold via the Cayley Trans-
form. In ICLR, 2020.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient Orthogonal Parametrisation of Recurrent Neu-
ral Networks Using Householder Reflections. In ICML,
2017.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral Normalization for Generative Adversarial Networks.
In ICLR, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS.
2019.

Tomczak, J. M. and Welling, M. Improving Variational
Auto-Encoders using Householder Flow. arXiv preprint,
2016.

Uhlig, F. Constructive Ways for Generating (Generalized)
Real Orthogonal Matrices as Products of (Generalized)
Symmetries. Linear Algebra and its Applications, 2001.

van den Berg, R., Hasenclever, L., Tomczak, J., and Welling,
M. Sylvester Normalizing Flows for Variational Infer-
ence. In UAI, 2018.

Xue, J., Li, J., and Gong, Y. Restructuring of Deep Neural
Network Acoustic Models with Singular Value Decom-
position. 2013.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing Gradients for
Deep Neural Networks via Efficient SVD Parameteriza-
tion. In ICML, 2018.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

What if Neural Networks had SVDs?

8. Supplementary Material
8.1. Matrix Operations

Proof of Lemma 1.

Proof. (1) |det(W)| = |det(U)| · |det(Σ)| · |det(V T)| since
the determinant of a product is equal to the product of deter-
minants. But the determinant of orthogonal matrices U and
V T is ±1, so |det(W)| = |det(Σ)|. But Σ is diagonal and
all entries are positive so |det(W)| = det(Σ) =

∏d
i=1 Σii.

(2) Let us check that W ·W−1 = I . Recall that V T = V −1

and UT = U−1.

WW−1 = UΣV TV Σ−1UT

= UΣΣ−1UT

= UUT = I

(3) The singular values are defined to be the entries of Σ,
the diagonal matrix of the Singular Value Decomposition.

(4) If W is symmetric then W = UΣUT . Inserting this
decomposition into the matrix exponential, we get

eUΣUT

=

∞∑
k=0

1

k!
(UΣUT)k

=

∞∑
k=0

1

k!
UΣkUT

= U

(∞∑
k=0

1

k!
Σk

)
UT

= UeΣUT

IfW is skew-symmetric, WT = −W , we getW = UΣUT

but for complex U .

(5) If W is symmetric then W = UΣUT . Inserting this
decomposition into the Cayley transform yields

C = (I −W)(I +W)−1

= (UIUT − UΣUT)(UIUT − UΣUT)−1

= U(I − Σ)UTU(I + Σ)−1UT

= U(I − Σ)(I + Σ)−1UT .

IfW is skew-symmetric, WT = −W , we getW = UΣUT

but for complex U .

Weight Decay. Weight decay is a regularizer that adds the
Frobenious norm of a weight matrix to the loss function.
The Frobenious norm is ||W ||2F =

∑
ijW

2
ij =

∑d
i=1 Σ2

ii.
If the SVD is given the norm can be computed in O(d)
instead of O(d2).

Compression with Truncated SVD. Neural Networks
can be compressed by truncating the SVD of all weight
matrices, see e.g. (Xue et al., 2013). This usually requires
computing the SVD in O(d3) time. If the SVD is given,
we only need to compute the largest k singular values and
discard the remaining singular values/vectors. Computing
the k largest singular values could be done by sorting all
singular values in O(d lg d) time. It is possible to get O(d)
time by using the selection algorithm to get the k’th largest
singular value in O(d) time, then partition around the k’th
largest element.

Pseudo-Inverse. The pseudo-inverse of a rectangular ma-
trix M ∈ Rm×n is usually computed by using the SVD
to compute the reciprocal of the singular values. The time
consumption is dominated by computing the SVD which,
if m > n, takes O(m2n) time. If the SVD is given it takes
O(n) time to compute the reciprocal of the singular values.

Condition Number. The condition number of a square
matrix is κ = maxi Σii/mini Σii, normally computed by
first computing the SVD in O(d3) time. If the SVD is
already given it can be computed in O(d) time.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

What if Neural Networks had SVDs?

8.2. Proof of Theorem 2.

Theorem. Algorithm 2 computes ∂L
∂X and ∂L

∂v1
, ..., ∂L∂vd in

O(d2m) time with O(d/m+m) sequential matrix multipli-
cations.

Proof. Correctness. Our algorithm computes gradients
by the same equations as (Zhang et al., 2018), so in most
cases, we show correctness by clarifying how our algorithm
computes the same thing, albeit faster.

Consider ∂L
∂X computed in Step 1:

∂L

∂X
=

∂L

∂Ad/m+1
= PTd/m · · ·P

T
1

∂L

∂A1

= HT
d · · ·HT

1

∂L

∂A1
. eq. (3)

This is the same as that computed in (Zhang et al., 2018).

Consider Step 2. Both ∂L
∂v̂j

and ∂L

∂Âj
are computed as

done in (Zhang et al., 2018). Âj+1 is computed using
Equation (5) similar to backpropagation without storing
activations, (Gomez et al., 2017), but using the fact that
ĤT
j = Ĥ−1

j .

Time Complexity. In Step 1 the for loop performs d/m
matrix multiplications. Due to the WY decomposition
PTi = (I − 2WY T)T = I − 2YWT which can be multi-
plied on ∂L

∂Ai
∈ Rd×m inO(dm2) time sinceW,Y ∈ Rd×m.

The computation is repeated d/m times, and take a total of
O(d2m) time.

Step 2 line 14 performs two Householder matrix multiplica-
tions which take O(dm) time, see Equations (5) and (6). In
line 15 the gradient is computed by Equation (7), this sum
also takes O(dm) time to compute. Both computations on
line 14 and 15 are repeated d/m ·m times, see line 10 and
line 13. Therefore, the total time is O(d2m).

Number of Sequential Operations. Step 1 performs
O(d/m) sequential matrix operations. Lines 13-16 of Step
2 perform O(m) sequential matrix multiplications. Since
each iteration of line 10-17 is run in parallel, the algorithm
performs no more than O(d/m+m) sequential matrix mul-
tiplications.

Algorithm 3 Backwards Computation

1: Input: A1, ..., Ad/m+1, P1, ..., Pd/m and ∂L
∂A1

.

2: Output: ∂L
∂X and ∂L

∂vj
for all j where Hj = I− 2

vjv
T
j

||vj ||22
.

3:
4: // Step 1
5: for i = 1 to d/m do sequentially
6: ∂L

∂Ai+1
= PTi

∂L
∂Ai

eq. (4). . O(dm2)

7: end for
8:
9: // Step 2

10: for i = 1 to d/m do in parallel
11: Let ∂L

∂Â1
= ∂L

∂Ai
.

12: To ease notation, let Pi = Ĥm · · · Ĥ1.
13: for j = 1 to m do
14: Compute Âj+1,

∂L

∂Âj
, eqs. (5) and (6). . O(dm)

15: Compute ∂L
∂v̂j

using Âj+1,
∂L

∂Âj
, eq. (7). . O(dm)

16: end for
17: end for
18: return ∂L

∂X = ∂L
∂Ad/m+1

and ∂L
∂vj

for all j.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

What if Neural Networks had SVDs?

8.3. Comparing Running Time

This subsection clarifies how the matrix exponential and
the Cayley map was used in combination with the SVD
technique from (Zhang et al., 2018). It also provides further
details on the exact computations we timed in the exper-
iment. These details were left out of the main article as
they require the introduction of some notation regarding a
reparameterization function.

Let V ∈ Rd×d be a weight matrix and let φ be a function
that reparameterizes V so φ(V) is orthogonal and we can
perform gradient descent wrt. V . The Householder de-
composition can be used to construct such a function φ, by
letting the columns of V be Householder vectors and φ(V)
be the product of the resulting Householder matrices.

There exist alternative ways of constructing φ which does
not rely on the Householder decomposition. For example,
the matrix exponential approach where φexp(V) = eV and
the Cayley map approach where φC(V) = (I − V)(I +
V)−1 (Casado, 2019).

We record the joint time it takes to compute φ(V)X and the
gradients wrt. to V and X for a dummy input X ∈ Rd×M .
To simplify the gradient computation of V , we use a dummy
gradientG ∈ Rd×M st. the gradient wrt. V is [∂φ(V)·X

∂V]TG.
It might be useful to think of G as the gradient that arises
by back-propagating through a Neural Network.

Both the dummy input and the dummy gradient have nor-
mally distributed entries Xij , Gij ∼ N(0, 1).

Implementation details. The parallel algorithm from
(Zhang et al., 2018) halted for larger values of d. The failing
code was not part of the main computation. This allowed us
to remove the failing code and still get a good estimate of
the running time of the parallel algorithm. We emphasize
that removing the corresponding code makes the parallel
algorithm faster. The experiments thus demonstrated that
our algorithm is faster than a lower bound on the running
time of the parallel algorithm.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

What if Neural Networks had SVDs?

8.4. Using the SVD to Compute Matrix Operations

This section requires first reading Section 4.1 and Sec-
tion 4.2. Recall that we in Section 4.2 want to measure
the time it takes to compute the matrix operation, the for-
ward pass and the gradient computations. For example, with
matrix inversion, we want to compute the matrix opera-
tion Σ−1, the forward pass V Σ−1UTX and the gradient
computations wrt V,Σ, U,X .

The time of the forward pass and gradient computations is
no more than two multiplications and two gradient compu-
tations, which is exactly two times what we measured in
Section 4.1. We re-used those measurements, and add the
time it takes to compute the matrix operation, e.g., Σ−1.

Over Estimating the Time of Our Algorithm. The ma-
trix exponential and the Cayley map require one orthogonal
matrix instead of two, i.e., UΣUT instead of UΣV T . The
WY decomposition then only needs to be computed for U
and not both U and V . By re-using the data we measure
the time of two orthogonal matrices, this thus estimates an
upper-bound of the real running time of our algorithm.

