What if Neural Networks had SVDs?

Anonymous Authors!

Abstract

Various Neural Networks employ time-
consuming matrix operations like matrix
inversion. Many such matrix operations are
faster to compute given the Singular Value
Decomposition (SVD). Techniques from (Zhang
et al., 2018; Mhammedi et al., 2017) allow using
the SVD in Neural Networks without computing
it. In theory, the techniques can speed up matrix
operations, however, in practice, they are not fast
enough. We present an algorithm which is up to
27 x faster than a previous approach, fast enough
to speed up several matrix operations.

1. Introduction

What could be done if the Singular Value Decomposition
(SVD) of the weights in a Neural Network was given?
Time-consuming matrix operations, such as matrix inversion
(Hoogeboom et al., 2019), could be computed faster. Vari-
ous Neural Networks employ such matrix operations, which
often increase training time. Speeding up time-consuming
matrix operations is thus very desirable.

For example, matrix inversion of d x d matrices could be
computed and multiplied with a vector in O(d?) time instead
of O(d®). Furthermore, Spectral Normalization (Miyato
et al., 2018), often used by Generative Adversarial Networks
(Goodfellow et al., 2014), could be done exactly in O(d)
time instead of approximated in O(d?). how

Both matrix operations take less time given the SVD. How-
ever, computing the SVD takes O(d?) time, which is no
faster than computing either matrix operation. In Neural
Networks, computing the SVD can be circumvented by the
SVD reparameterization from (Zhang et al., 2018), which,
in theory, allows speeding up both matrix operations.

However, in practice, we find that the previous approach
to SVD reparameterization rarely attains any speed-ups for
matrix operations on GPUs. This might not be surprising
since the technique was not developed to speed up matrix
operations. The difference in theory and practice occurs
because the technique alters the forward pass of a fully
connected layer to be highly sequential.

—— Sequential pytorch.inverse —— Ours

0.12 A

0.10 4

27.1x faster

0.02 _I_Z.7><
)\ _JEBX

100 200 300 400 500 600 700 800
Size of matrix d

Time in seconds
e o o9
o o o
S o ©
)))

0.00

Figure 1. Time consumption of different approaches to matrix in-
version in Neural Networks. The plot compares our algorithm
against the sequential algorithm from (Zhang et al., 2018) and
standard matrix inversion. Section 4.1 compares multiple matrix
operations and a parallel algorithm from (Zhang et al., 2018).

On a d x d weight matrix, the technique entails the compu-
tation of O(d) sequential inner products, which is ill-fit for
parallel hardware like GPUs. In practice, we find that the
O(d) sequential inner products take longer to compute than
both matrix inversion and Spectral Normalization.

We introduce a novel algorithm that remedies the issue with
sequential inner products. Our algorithm retains the same
time complexity as the sequential algorithm from (Zhang
et al., 2018) while reducing the number of sequential op-
erations. On a mini-batch of size m > 1, our algorithm
performs O(d/m + m) sequential matrix-matrix operations
instead of O(d) sequential vector-vector operations.

In practice, our algorithm is faster than all algorithms from
(Zhang et al., 2018), fast enough to speed up several matrix
operations. For example, for matrix inversion in Neural Net-
works, our algorithm is up to 27 faster than the sequential
algorithm from (Zhang et al., 2018) and up to 4.3 x faster
than standard matrix inversion, see Figure 1.

The remainder of the paper is structured as follows. In Sec-
tion 2, we demonstrate the many benefits of SVDs for Neural
Networks and outline the SVD technique from (Zhang et al.,
2018). In Section 3, we present our new parallel algorithm
and prove desirable theoretical guarantees. In Section 4, we
present experiments, followed by related work in Section 5
and a conclusion in Section 7.

Code: see ’pythoncode.zip’ attached to our submission.

What if Neural Networks had SVDs?

2. Background
2.1. Fast Matrix Operations Using SVD

This subsection describes how several matrix operations,
commonly used by Neural Networks, can be computed
faster if the SVD is known. We consider a square weight ma-
trix since 4 out of the 5 operations we consider are undefined
for rectangular matrices. The SVD of a real square matrix
W € R¥*dis W = UXVT where ¥ € R¥4 is a diago-
nal matrix with ¥;; > 0 and U,V € R%*? are orthogonal
matrices, ie., UL = U land VT = V1,

Some of the matrix operations concern the special case
where W = W7 In this case, the SVD simplifies to W =
UXUT, however, the values of ¥;; can be negative.

Lemma 1 states five well-known linear algebra results. Each
result allows fast computation of a different matrix operation
when the SVD is known. After the lemma, we describe how
each matrix operation relates to Neural Networks.

Lemma 1. Let W have a SVD W = UXV'T, it holds that
. d
1. Determinant. |det(W)| = [];_; Zi.
2. Inverse. W= =Vx-1UT,
3. Largest singular value. max{_, %;;.
4

. Matrix exponential. If W = W7 then W = UXUT,

| —

‘W’“ =Ue U",

o

oo
eV = E
k=0

where e* is diagonal and (e*);; = e¥ii. Similar is
true when WT = —W.
5. Cayley map. If W = W' then W = UXUT,
C:=I-W)T+W)!
=U(I-%)(I+%)'U”.

Similar is true when WT = —W.

Proof. See the Supplementary Material 8.1. O

We now show how each result in Lemma 1 relates to the
computation of matrix operations in Neural Networks.

Result 1 and 2 allow the computation of matrix determinant
and matrix inversion in O(d) time. Both operations are used
by Normalizing Flows (Hoogeboom et al., 2019). Com-
puting these operations with standard operations like PY-
TORCH.INVERSE(..) and PYTORCH.SLOGDET(..) (Paszke
et al., 2019) take O(d?) time. Previous work suggests using
the PLU and QR decomposition to circumvent the O(d?)
standard operations (Kingma & Dhariwal, 2018; Hooge-
boom et al., 2019). We discuss the advantages of the SVD
approach in Section 5.

Result 3 allows the exact computation of the largest singular
value in O(d) time. The largest singular value is used for
Spectral Normalization (Miyato et al., 2018). It is usually
approximated in O(d?r) time by running r rounds of the
power iteration algorithm. Similar speed-ups are possible
when W is rectangular.

Result 4 and 5 allow the computation of the matrix expo-
nential and the Cayley map in O(d) time. Both operations
are used by (Casado, 2019), computed in O(d?) by Padé
approximation and PYTORCH.SOLVE(..), respectively.

See Table 1 for a summary.

Similar bounds can be obtained for weight decay, pseudo-
inverse, condition number and compression by low-rank
approximation, see Supplementary Material 8.1.

Remark. All operations from Lemma 1 can be computed
in O(d) time, faster than computing a single matrix-vector
multiplication O(d?). For example, if we compute W~z
for 2 € R? the time consumption is dominated by the multi-
plication and not the matrix inversion.

2.2. The SVD Technique

This subsection describes how (Zhang et al., 2018) allows
using the SVD of the weights matrices in Neural Networks
without computing them, and in particular, how this ap-
proach is limited by the computation of sequential inner

Table 1. Overview of the matrix operations from Lemma 1, comparing the time complexity of each operation with and without the SVD.
The SVD of W € R™is W = UX V7 and r is the number of rounds used for the power iteration algorithm.

Operation Complexity Example Use Cases
Name Given SVD No SVD With SVD
Determinant 1, = O(d?) O(d) (Hoogeboom et al., 2019)
Inverse vy-iuT O(d?) O(d) (Hoogeboom et al., 2019)
Largest singular value max?_, ¥ O(d?r) O(d) (Miyato et al., 2018)
Matrix Exponential Ue*UT O(d?) O(d) (Casado, 2019)
Cayley map U(I-2)(I+x)~tuT O(d?) o(d) (Casado, 2019)

What if Neural Networks had SVDs?

products. Let W = UXVT be the SVD of a weight ma-
trix W. The goal is to allow gradient descent updates of
W while preserving the SVD. Consider updating U, %, V' a
small step 77 € R in the direction of gradients Vy, Vs, V.
Y =Y-nVsg, U =U-nVy, V' =V-nVy.
While ¥’ remains diagonal, both U’ and V" are in general
not orthogonal, which is needed to preserve the SVD. To
this end (Zhang et al., 2018) suggest using a technique from
(Mhammedi et al., 2017) which decomposes an orthogonal

matrix as a product of d Householder matrices Hy, ..., Hy:
d vl

U= HH H; 21—2”’ |Z|2 vieRYL (D)
Villa

Householder matrices satisfy several useful properties. In
particular, the matrix U remains orthogonal under gradi-
ent descent updates v; = v; — nV,, (Mhammedi et al.,
2017). Furthermore, all products of Householder matrices
are orthogonal, and any d x d orthogonal matrix can be
decomposed as a product of d Householder matrices (Uhlig,
2001). Householder matrices thus allow us to perform gra-
dient descent over orthogonal matrices, which allows us to
preserve the SVD of W during gradient descent updates.

Multiplication. One potential issue remains. The House-
holder decomposition might increase the time it takes to
multiply U X for a mini-batch X € R¥*™ during the for-
ward pass. Consider computing

UX =Hy - (Hy_1(Ha - X)).)

The product U X can then be computed by d Householder
multiplications. If done sequentially, as indicated by the
parenthesis in Equation (2), each Householder multiplica-
tion can be computed in O(dm) time (Zhang et al., 2018).
All d multiplications can then be done in O(d*m) time.
Therefore, the Householder decomposition does not increase
the time complexity of computing U X.

Unfortunately, the O(d?m) time complexity comes at the
cost of multiplying each Householder matrix sequentially,
and each Householder multiplication entails computing an
inner product, see Equation (1). The multiplication UX
then requires the computation of O(d) inner products se-
quentially. Such sequential computation is slow on parallel
hardware like GPUs, much slower than normal matrix mul-
tiplication. To exploit GPUs (Zhang et al., 2018) suggests
using a parallel algorithm that takes O(d?) time, but this is
no faster than computing the SVD.

We are thus left with two options: (1) a O(d*m) sequential
algorithm and (2) a O(d®) parallel algorithm. The first op-
tion is undesirable since it entails the sequential computation
of O(d) inner products. The second option is undesirable

since it asymptotically takes the same time as the SVD, i.e.,
asymptotically, we might as-well compute the SVD. In prac-
tice, both algorithms usually achieve no speed-up for the
matrix operations from Lemma 1, see Section 4.2.

Our main contribution is a novel parallel algorithm that
resolves the issue with sequential inner products without in-
creasing the time complexity. Our algorithm takes O(d?m)
time but performs O(d/m + m) sequential matrix-matrix
operations instead of O(d) sequential vector-vector oper-
ations (inner products). In practice, our algorithm is up
to 6.2 faster than the parallel algorithm and up to 27.1x
faster than the sequential algorithm, see Section 4.1.

Mathematical Setting. Time complexity is computed in
the RAM model. The number of sequential matrix-matrix
and vector-vector operations is simply counted. We count
only once when other sequential operations can be done in
parallel. For example, processing v, ..., v4/2 sequentially
while, in parallel, processing v4/241, ---, Vq Sequentially, we
count d/2 sequential vector-vector operations.

The Orthogonal Constraint. The SVD technique per-
form gradient descent over orthogonal matrices. This is
possible with Householder matrices, however, other tech-
niques exists. For example, techniques using the matrix
exponential and the Cayley map (Casado, 2019; Li et al.,
2020). For d x d matrices both techniques spend O(d?)
time, no faster than computing the SVD.

3. A Parallel Algorithm

3.1. Forward Pass

Our goal is to create an O(d?m) algorithm with few sequen-
tial operations that solves the following problem: Given
an input X € R¥™ with d > m > 1 and Householder
matrices Hy, ..., Hy compute the output A = Hy --- Hy X.
For simplicity, we assume m divides d.

Since each H; is a d x d matrix, it would take O(d®) time
to read the input Hy, ..., H;. Therefore, we represent each
Householder matrix H; by its associated Householder vector
v; such that H; = I — 2v;0l /||vi|[3.

A simplified version of our algorithm proceeds as follows:
divide the Householder product H; - - - H; into smaller prod-
ucts P - -+ Py/p, so each P; is a product of m Householder
matrices:

Pi :H(i—1)~m+1"‘Hi-m 1= 1,...,d/m. (3)
All d/m products P; can be computed in parallel. The out-
put can then be computed by A = Py - - - Py/,,, X instead of

A = H;--- H; X, which reduces the number of sequential
matrix multiplications from d to d/m.

What if Neural Networks had SVDs?

This algorithm computes the correct A, however, the time
complexity increases due to two issues. First, multiplying
each product P; with X takes O(d?m) time, a total of O(d?)
time for all d/m products. Second, we need to compute all
d/m products Pi, ..., Py/p, in O(d?m) time, so each prod-
uct P; must be computed in O(d?*m/(d/m)) = O(dm?)
time. If we only use the Householder structure, it takes
O(d?m) time to compute each P;, which is not fast enough.

Both issues can be resolved, yielding an O(d?*m) algorithm.
The key ingredient is a linear algebra result that dates back
to 1987. The result is restated in Lemma 2.

Lemma 2. (Bischof & Van Loan, 1987) For any m House-
holder matrices Hy, ..., H,, there exists W,Y € R¥™ st

I—-2wYT =H,---H,,.

Both W and 'Y can be computed by m sequential House-
holder multiplications in O(dm?) time.

Proof. See (Bischof & Van Loan, 1987) Method 2. O
For completeness, we provide pseudo-code in Algorithm 1.

Theorem 1 states properties of Algorithm 1 and its proof
clarify how Lemma 2 solves both issues outlined above.

Algorithm 1 Forward Computation

Input: X € R*™ and Hy, ..., H; € R4*4,
Output: Ay = P+ Py X = Hy--- Hg X.

/I Step 1
for i = d/m to 1 do in parallel

Compute Y;, W; € R¥™ such that > O(dm?)
P =1-2w;y"
by using Lemma 2.
end for
/I Step 2
Ad/erl = X.
for i = d/m to 1 do sequentially
Ai = Ai+1 — 2VV7(KTAZ+1) . > O(de)
end for
return A;.

Theorem 1. Algorithm I computes Hy - - - HgX in O(d*m)
time with O(d/m + m) sequential matrix multiplications.

Proof. Correctness. Each iteration of Step 2 computes

Aj = Aipr — 2Wi (Y Ai)

=PA;. By Lemma 2

Therefore, at termination, Ay = Py - -+ Py/,,, X. In Step 1,
we used Lemma 2 to compute the P;’s such that A =
Hy--- HyX as wanted.

Time complexity. Consider the for loop in Step 1. By
Lemma 2, each iteration takes O(dm?) time. Therefore, the
total time of the d/m iterations is O(dm?d/m) = O(d*m).

Consider iteration ¢ of the loop in Step 2. The time of the
iteration is asymptotically dominated by both matrix mul-
tiplications. Since A;;1, X; and Y; all are d X m matrices,
it takes O(dm?) time to compute both matrix multiplica-
tions. There are d/m iterations so the total time becomes
O(dm?d/m) = O(d*m).

Number of Sequential Operations. Each iteration in Step
2 performs two sequential matrix multiplications. There are
d/m sequential iterations which gives a total of O(d/m)
sequential matrix multiplications.

Each iteration in Step 1 performs m sequential Householder
multiplications to construct P;, see Lemma 2. Since each
iteration is run in parallel, the algorithm performs no more
than O(d/m + m) sequential matrix multiplications. ~ [J

Remark. Section 3.2 extends the techniques from this
section to handle gradient computations. For simplicity,
this section had Algorithm 1 compute only A;, however, in
Section 3.2 it will be convenient to assume Ay, ..., Ag/pm,
are precomputed. Each A; = P;--- Py;,,, X can be saved
during Step 2 of Algorithm 1 without increasing asymptotic
memory consumption.

3.2. Backwards Propagation

This subsection extends the techniques from Section 3.1
to handle gradient computations. Our goal is to create
an O(d?m) algorithm with few sequential operations that
solves the following problem: Given Ay,..., Ag/mi1,
Py, ..., Py/m and 8‘% for some loss function L, compute

oL oL oL i
ox and 7=, .., 2, where v; is a Householder vector st.

each Householder matrix is H; = I — 2v;v] /||v;|[3.

Since each P; is a d x d matrix, it would take O(d®/m)
time to read the input P, ..., Py/r,. Therefore, we represent
each P; by its WY decomposition P; = [— 2W Y7,

On a high-level our algorithm has two steps.

Step 1. Sequentially compute 24, 887{13’ s ﬁ by
oL _ [0A; 1" 0L _ z 0L @
DA |0Ai] 04; T 0A;

This also gives the gradient wrt. X since X = Agj/p,41.

Step 2. We then use ;—ALl, e Maf/ — from Step 1 to com-

pute the gradient % for all j. This problem can be split
J

into d/m subproblems, which can be solved in parallel, one

subproblem for each 08 j_ .

What if Neural Networks had SVDs?

oL _ _ oL oL oL oL (IL) oL OL
2% 0‘4d/m+l . 0‘4d/m ?Ad/m—rl ”(‘)AH,l g 04417 7 04y . 04
¢T]r ! T $T
Rl/m Pz]/mfl R Pl

(a) Step 1: Sequential part of Algorithm 2.

T BV VA A A T
Aiv1) — Ay 0Am 94jn ?jj 04y 94 04;
o’ HT JZE8
m 1

Ai+1 = Am+1 A’m A\jJrl A] A\Q Al = Ai
(b) Step 2: The ¢’th subproblem in Algorithm 2.

Figure 2. Computational graph of Step 1 and the 7’th subproblem in Step 2 from Algorithm 2.

For completeness, we state pseudo-code in Algorithm 2,
which we now explain with the help of Figure 2.

Figure 2a depicts a computational graph of Step 1 in Algo-
rithm 2. In the figure, consider 2 a and Pl , which both
have directed edges to a multlphcatron node (denoted by -).

The output of this multiplication is ;TLZ by Equation (4).
AL

This can be repeated to obtain DA5 1 DAyt

Step 2 computes the gradient of all Householder vectors g L

This computation is split into d/m distinct subproblems that
can be solved in parallel. Each subproblem concerns 3‘9 j

and the product P;, see line 10-12 in Algorithm 2.

To ease notatron we index the Householder matrices of P;
by P; = H H1 Furthermore, we let Am+1 = AZ+1
and A = H, AJH The notation implies that A =
H b Am+1 = P;A;+1 = A;. The goal of each sub-
problem is to compute gradients wrt. the Householder vec-
tors Uy, ... 111 of Hm7 . H 1. To compute the gradient of
v;, we need A]+1 and , which can be computed by:

Ajg = frj—lﬁj = HTA; (5)
" 4T
OL _ | 04, OL _ 5rOL (6)
A |0A; | 84, 7 94
Figure 2b depicts how 21\2, Am+1 and 3,48L
m-41

Given AJH and , We can compute 6— as done in

(Zhang et al., 2018 ‘Mhammedi et al. , 2017). For com-
pleteness, we restate the needed equation in our notation,
see Equation (7). Let a") be the I’th column of A; j+1 and

let gV be the I’th column of 8‘9 AL The sum of the gradient

J
over a mini-batch of size m is then:

%Z AT (l) (l) +(AT (5)) 0 %
=1

L(U a(l))((l))

Theorem 2 states properties of Algorithm 2.

Algorithm 2 Backwards Computation

1: Input: Al, .
Output

Ad/m+1v Pl, .. Pd/m and BiL

9% and §& for all k where Hy, = I —2 vk

[vell3

// Step 1

for i = 1 to d/m do sequentially
aao; = Pl ok ea. (4.

end for

> O(dm?)

R AN Al

// Step 2
for i = 1 to d/m do in parallel
oL _ [oL
Letaiﬁl_(BAt) ~ ~
To ease notation, let P, = H,,, - - - H;.

for j =1tomdo
Compute A

—_
— O

P
o

A1, S5 aA ,egs. (5) and (6). > O(dm)

_usrngAH,aA eq. (7). > O(dm)

—_
W

Compute
end for
: end for
. oL _
. return I =

—_ =
N

gaor— and G forallk =1,d.

—_
(]

Theorem 2. Algorithm 2 computes 3 aL and g le 5 6%1 in
O(d*m) time with O(d/m +m) sequentzal matrix multipli-

cations.

Proof. See the Supplementary Material 8.2. O

3.3. Extensions

Trade-off. Both Algorithm 1 and Algorithm 2 can be ex-
tended to take a parameter k that controls a trade-off be-
tween total time complexity and the amount of parallelism.
This can be achieved by changing the number of House-
holder matrices in each product P; from the mini-batch size
m to an integer k € {2,...,d — 1}. The resulting algo-
rithms takes O(d?k + d*m) time, O(d?m /k) space and has
O(d/k + k) sequential matrix multiplications. This exten-
sion has the practical benefit that one can try different values
of k and choose the one that yields superior performance on
a particular hardware setup.

What if Neural Networks had SVDs?

Convolutional Layers. So far, we have considered the
SVD technique for matrices which corresponds to fully con-
nected layers. The matrix case extends to convolutions by,
e.g., 1 x 1 convolutions (Kingma & Dhariwal, 2018) or
invertible periodic convolutions (Hoogeboom et al., 2019).
The SVD technique can be used for such convolutions with-
out increasing the time complexity. On an input with height
h and width w our algorithm performs O(d/m + mhw)
sequential matrix multiplications instead of the O(d) se-
quential inner products of the previous algorithm.

Recurrent Layers. The SVD technique was developed
for Recurrent Neural Networks (RNNs) (Zhang et al., 2018).
Let r be the number of recurrent applications of the RNN.
Our algorithm performs O(d/m + rm) sequential matrix
operations instead of the O(d) sequential inner products.

4. Experiments

This section contains two experiments. Section 4.1 com-
pares the running time of our algorithm against alternatives.
Section 4.2 shows our algorithm speeds up matrix opera-
tions. To simulate a realistic machine learning environment,
we performed all experiments on a standard machine learn-
ing server using a single NVIDIA RTX 2080 Ti.

4.1. Comparing Running Time

This subsection compares the running time of our algorithm
against four alternative algorithms. We compare the time
all algorithms spend on gradient descent with a single or-
thogonal matrix, since such constrained gradient descent
dominates the running time of the SVD technique.

We first compare our algorithm against the parallel and
sequential algorithm from (Zhang et al., 2018), all three
algorithms rely on the Householder decomposition. For
completeness, we also compare against approaches that does
not rely on the Householder decomposition, in particular,
the matrix exponential and the Cayley map (Casado, 2019).
See Supplementary Material 8.3 for further details.

We measure the time of a gradient descent step with a weight
matrix W € R?*? and a mini-batch X € R4*™ where
m =32andd = 1-64,2-64,...,48 - 64. We ran each
algorithm 100 times, and we report mean time y with error
bars [— o,y + o] where o is the standard deviation of
running time over the 100 repetitions.

Figure 3 depicts the running time on the y-axis, as the size
of the d x d matrices increases on the x-axis. For d > 64,
our algorithm is faster than all previous approaches. At
d = 64 our algorithm is faster than all previous approaches,
except the parallel algorithm. Previous work employ sizes
d = 192 in (Kingma & Dhariwal, 2018) and d = 784 in
(Zhang et al., 2018).

S
2)
g 0.15 4 : (S;Z?,::i,ntla]
n .
,ug) 0.10 4 —— Exponential 6.2 faster
E 0.05

0.00

500 1000 1500 2000 2500 3000
Size of matrix d

Figure 3. Running time of different algorithms for d X d matrices.
Our algorithm is fastest when d > 64. The sequential algorithm
from (Zhang et al., 2018) crashed when d > 448.

" 25.0

S —— Our Algorithm
g 20.0 1 —— Parallel

2 —— Sequential

© 15.0 A

g — Cayley

5 10.0 —— Exponential
2 [—
& 5.0

[9]

o /\/\-’\,-

0.0

500 1000 1500 2000 2500 3000
Size of matrix d

Figure 4. Improvement of our algorithm relative to previous algo-
rithms, i.e., the mean time of a previous algorithm divided by the
mean time of our algorithm.

Figure 4 depicts how much faster our algorithm is relative
to the previous algorithms, i.e., the mean time of a previous
algorithm divided by the time of our algorithm, which we
refer to as relative improvement. For d > 500, the relative
improvement of our algorithm increase with d.

4.1.1. ADDITIONAL INSIGHTS

Householder Decomposition. At d = 448 our algorithm
is roughly 25x faster than the sequential algorithm. Our
algorithm is faster with d = 3072 than the sequential algo-
rithm with d = 448. Previous work like (Hoogeboom et al.,
2019; van den Berg et al., 2018; Mhammedi et al., 2017)
use the Householder decomposition with the sequential al-
gorithm. Since our algorithm computes the same thing as
the sequential algorithm, it can speed-up their computation
without degrading performance in any way.

Implementations of Previous Algorithms. For the ma-
trix exponential and the Cayley map we used the open-
source implementation' from (Casado, 2019). For the paral-
lel and sequential algorithm we used the open-source imple-
mentation? from (Zhang et al., 2018).

Thttps://github.com/Lezcano/expRNN
Zhttps://github.com/zhangjiong724/spectral-RNN

https://github.com/Lezcano/expRNN
https://github.com/zhangjiong724/spectral-RNN

What if Neural Networks had SVDs?

4.2. Using the SVD to Compute Matrix Operations

This subsection investigates whether the matrix operations
from Lemma 1 achieves speed-ups in practice. The matrix
operations are usually used during the forward pass of a
Neural Network, changing the subsequent gradient compu-
tations. Therefore, we measure the sum of the time it takes
to compute the matrix operation, the forward pass and the
subsequent gradient computations.

For example, with matrix inversion, we measure the time it
takes to compute the matrix operation ¥~ 1, the forward pass
W~1X = VE~1UT X and the subsequent gradient compu-
tation wrt. U, 3, V, X. The measured time is compared with
a standard approach like PYTORCH.INVERSE (Paszke et al.,
2019). Again, we measure the time of the matrix operation
PYTORCH.INVERSE(W), the forward pass W !X, and the
subsequent gradient computation wrt. W, X.

We use the following standard approaches, inspired by
(Kingma & Dhariwal, 2018) and (Casado, 2019):

Determinant: PYTORCH.SLOGDET(W)
Inverse: PYTORCH.INVERSE(W)
Cayley: PYTORCH.SOLVE(I - W, I + W)

Exponential: Padé Approximation.

We run the SVD technique with three different algorithms:
our algorithm, the sequential and the parallel algorithm
from (Zhang et al., 2018). For each matrix operation, we
consider matrices V, %, U, W € R%*? and X € R>*M,
wherem = 32andd = 1-64,2- 64, ...,48 - 64. We repeat
the experiment 100 times, and report the mean time p with
error bars [p — o, i 4+ o] where o is the standard deviation
of the running times over the 100 repetitions.

We plot the time of the SVD technique for three different
algorithms: ours, parallel and sequential. To avoid clutter,
we plot only the time of our algorithm for the matrix opera-
tion it is slowest to compute, and the time of the previous
algorithms for the matrix operations they were fastest to
compute. See Supplementary Material 8.4 for details.

Figure 5 depicts the measured running time on the y-axis
with the size of the d x d matrices increasing on the x-axis.
Each matrix operation is plotted as a dashed line, and the dif-
ferent algorithms are plotted as solid lines. In all cases, our
algorithm is faster than the standard approach. For example,
with d = 768, our algorithm is 3.1 faster than the Cayley
map, 4.1x faster than the matrix exponential, 2.7 x faster
than inverse and 3.5 x faster than matrix determinant. At
d = 768, the parallel algorithm provides a speed up for only
one operation, a 1.1x speed-up for the matrix exponential.
The sequential algorithm is not fast enough to speed up any
matrix operation.

0.30 7 7
—— Our Algorithm ,' 'r
/
0254 — Parallel . /I ’:
—— Sequential / 1
—-—=- Cayley / /
3 0.20 - . / ’
5 —-==~ Exponential [//
9 Inverse I ot
(%] N N
= 0.15 Determinant ,,’
()
£
'_

0 500 1000 1500 2000 2500 3000
Size of matrix d

Figure 5. Running time of matrix operations. Solid lines depict
approaches which use the SVD technique and dashed lines depict
standard approaches like PYTORCH.INVERSE.

4.2.1. ADDITIONAL INSIGHTS

Previous work on Matrix Determinant. Previous work
suggested speeding up matrix determinant by using the PLU
decomposition (Kingma & Dhariwal, 2018) and the QR de-
composition (Hoogeboom et al., 2019). Our algorithm can
speed up the QR decomposition, which (Hoogeboom et al.,
2019) introduced to fix a limitation of the PLU decomposi-
tion. This is possible because the QR decomposition uses
an orthogonal matrix, which, in (Hoogeboom et al., 2019),
is done by using the Householder decomposition. See the
Related Work in Section 5 for details.

Spectral Normalization. Previous work (Miyato et al.,
2018) uses the power iteration algorithm to approximate the
largest singular value of a matrix W. Power iteration takes
an initial random vector vy, and iteratively computes powers
vit1 = Wu;/||[Wu;|| until a sufficiently good approxima-
tion is reached. In Neural Networks, vy is usually initialized
by the result from the previous mini-batch update. In this
case, one power iteration usually gives a sufficiently good
approximation. We found the increased multiplication time
caused by the SVD technique incurs a larger overhead than
one power iteration, i.e., no speed-up.

Pay For One, Get Spectral Normalization For Free.
The time consumption of the SVD technique is dominated
by the forward pass and the subsequent gradient computa-
tions. For example, when d = 3072, computing ¥~ ! takes
just 0.7% of the time it takes to compute VX~ 'VT X, If
we also compute Spectral Normalization, we only need to
compute X/ max; Y.;;, with a negligible increase in total
computation time. The same is true for matrix determi-
nant [[; ¥;;, weight decay Y, ¥% and condition number
max; E”/ mini Zii.

What if Neural Networks had SVDs?

5. Related Work

The Householder Decomposition. The Householder de-
composition of orthogonal matrices has been used in much
previous works, for example, (Tomczak & Welling, 2016;
Mhammedi et al., 2017; Zhang et al., 2018; van den Berg
et al., 2018; Hoogeboom et al., 2019). Previous work typi-
cally use a type of sequential algorithm that performs O(d)
sequential inner products. To circumvent the resulting long
computation time on GPUs, previous work often suggest
limiting the number of Householder matrices, which limits
the expressiveness of the orthogonal matrix, introducing a
trade-off between computation time and expressiveness.

Our algorithm takes the same asymptotic time as the sequen-
tial algorithm, however, it performs less sequential matrix
operations, making it up to 27x faster in practice. Since
our algorithm computes the same output as the previous se-
quential algorithms, it can be used in previous work without
degrading the performance of their model. In particular, our
algorithm can be used to either (1) increase expressiveness
at no additional computational cost or (2) speed up previous
applications at the same level of expressiveness.

SVDs in Neural Networks. The authors of (Zhang et al.,
2018) introduced a technique that provides access to the
SVD of the weights in a Neural Network without computing
the SVD. Their motivation for developing this technique
was the exploding/vanishing gradient issue in RNNs. In
particular, they use the SVD technique to force all singular
values to be within the range [1 + €] for some small e.

We point out that their technique, in theory, can be used
to speed up matrix operations, and, furthermore, that their
algorithms are too slow to speed-up most matrix operations
in practice. To mitigate this problem we introduce a new
algorithm that is more suitable for GPUs, which allows us
to speed up several matrix operations.

Different Orthogonal Parameterizations. The SVD
technique by (Zhang et al., 2018) uses the Householder
decomposition to perform gradient descent with orthogo-
nal matrices. Their work was followed by (Golinski et al.,
2019) that raises a theoretical concern about the use of
Householder decompositions. Alternative approaches based
on the matrix exponential and the Cayley map have desir-
able provable guarantees, which currently, it is not known
whether the Householder decomposition possesses. This
might make it desirable to use the matrix exponential or the
Cayley map together with the SVD technique from (Zhang
et al., 2018). However, previous work spend O(d?) time to
compute or approximate the matrix exponential and the Cay-
ley map. These approaches are thus undesirable for SVD
since they asymptotically take the same time as computing
the SVD.

Normalizing Flows. Normalizing Flows (Dinh et al.,
2015) is a type of generative model that, in some cases
(Kingma & Dhariwal, 2018; Hoogeboom et al., 2019), en-
tails the computation of matrix determinant and matrix in-
version. (Kingma & Dhariwal, 2018) propose to use the
PLU decomposition W = PLU where P is a permutation
matrix and L, U are lower and upper triangular. This allow
the determinant computation in O(d) time instead of O(d?).
(Hoogeboom et al., 2019) point out that a fixed permutation
matrix P limits flexibility. To fix this issue, they suggest us-
ing the Q R decomposition where R is a rectangular matrix
and @ is orthogonal. They suggest making () orthogonal
by using the Householder decomposition which our algo-
rithm can speed up. Alternatively, one could use the SVD
decomposition instead of the QR or PLU decomposition.

6. Code

During implementation of our algorithm, we found that
Python did not provide an adequate level of parallelization.
We therefore implemented our algorithm in CUDA to fully
utilize the parallel capabilities of GPUs. To make the code
widely accessible, we wrote accompanying Python code
that allows using our algorithm in PyTorch (Paszke et al.,
2019). For example: code that has a fully connected Neural
Network which use ’nn.Linear’ simply needs to change
‘nn.Linear’ to "LinearSVD’ after importing our code.

Further details can be found in ’pythoncode.zip’ attached
with our submission. We plan to publish a revised version
of the code on Github to ease future use of our algorithm.

7. Conclusion

We showed that, in theory, the techniques from (Zhang et al.,
2018; Mhammedi et al., 2017) allow speeding-up matrix
operations. However, in practice, we demonstrated that the
techniques are not fast enough on GPUs for moderately
sized use-cases. We proposed a novel algorithm that reme-
dies the issues with both algorithms from (Zhang et al.,
2018), which is up to 27 x faster than the previous sequen-
tial algorithm. Our algorithm introduces no loss of quality,
it computes the same thing as the previous algorithms, just
faster. Our algorithm has two uses:

e It can speed up the algorithms from (Zhang et al.,
2018), so much, that it is fast enough to speed up ma-
trix inversion, matrix determinant, matrix exponential
and the Cayley map.

e It can speed up previous work that employ the House-
holder decomposition as done in e.g. (Tomczak &
Welling, 2016; Mhammedi et al., 2017; van den Berg
et al., 2018; Hoogeboom et al., 2019).

What if Neural Networks had SVDs?

References

Bischof, C. and Van Loan, C. The WY Representation for
Products of Householder Matrices. SIAM Journal on
Scientific and Statistical Computing, 1987.

Casado, M. L. Trivializations for Gradient-Based Optimiza-
tion on Manifolds. In NeurIPS, 2019.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-Linear In-
dependent Components Estimation. In ICLR (Workshop),
2015.

Golinski, A., Lezcano-Casado, M., and Rainforth, T. Im-
proving Normalizing Flows via Better Orthogonal Param-
eterizations. In ICML Workshop on Invertible Neural
Networks and Normalizing Flows, 2019.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
Reversible Residual Network: Backpropagation Without
Storing Activations. In NIPS, 2017.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative Adversarial Nets. In NIPS, 2014.

Hoogeboom, E., van den Berg, R., and Welling, M. Emerg-
ing Convolutions for Generative Normalizing Flows. In
ICML, 2019.

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow
with Invertible 1x1 Convolutions. In NeurIPS. 2018.

Li, J., Li, F,, and Todorovic, S. Efficient Riemannian Op-
timization on the Stiefel Manifold via the Cayley Trans-
form. In ICLR, 2020.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient Orthogonal Parametrisation of Recurrent Neu-
ral Networks Using Householder Reflections. In ICML,
2017.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral Normalization for Generative Adversarial Networks.
In ICLR, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS.
2019.

Tomczak, J. M. and Welling, M. Improving Variational
Auto-Encoders using Householder Flow. arXiv preprint,
2016.

Uhlig, F. Constructive Ways for Generating (Generalized)
Real Orthogonal Matrices as Products of (Generalized)
Symmetries. Linear Algebra and its Applications, 2001.

van den Berg, R., Hasenclever, L., Tomczak, J., and Welling,
M. Sylvester Normalizing Flows for Variational Infer-
ence. In UAI 2018.

Xue, J., Li, J., and Gong, Y. Restructuring of Deep Neural
Network Acoustic Models with Singular Value Decom-
position. 2013.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing Gradients for
Deep Neural Networks via Efficient SVD Parameteriza-
tion. In ICML, 2018.

What if Neural Networks had SVDs?

8. Supplementary Material
8.1. Matrix Operations

Proof of Lemma 1.

Proof. (1) |det(W)| = |det(U)| - |det(Z)] - |det(VT)] since
the determinant of a product is equal to the product of deter-
minants. But the determinant of orthogonal matrices U and
VT is +1, so |det(W)| = |det(¥)|. But X is diagonal and
all entries are positive so |[det(W)| = det(X) = H?Zl Y
(2) Let us check that W - W~! = I. Recall that VT = V!
andUT = UL
ww =usvivsTluT
=Uusytu”
=UU" =1

(3) The singular values are defined to be the entries of X,
the diagonal matrix of the Singular Value Decomposition.

(4) If W is symmetric then W = UXU?. Inserting this
decomposition into the matrix exponential, we get

o0

usuT _ 1 T\k
e => H(UsUT)
k=0

=> LuskyT
k!
k=0

- 1 k T
=U <Z HE)U
k=0
=Ue”UT

If W is skew-symmetric, W7 = —W,we get W = USU”T
but for complex U.

(5) If W is symmetric then W = UXUT. Inserting this
decomposition into the Cayley transform yields

C=I-W)T+W)!
= It —vxuh it -vsvt)!
=U(I -2y UtuI+x)~ v’
=U(I-%)(I+%)'U”.

If W is skew-symmetric, W7 = —W,we get W = USUT
but for complex U. O

Weight Decay. Weight decay is a regularizer that adds the

Frobenious norm of a weight matrix to the loss function.
. . d

The Frobenious norm is ||[W |2 = Zij Wf] =i »2.

If the SVD is given the norm can be computed in O(d)

instead of O(d?).

Compression with Truncated SVD. Neural Networks
can be compressed by truncating the SVD of all weight
matrices, see e.g. (Xue et al., 2013). This usually requires
computing the SVD in O(d®) time. If the SVD is given,
we only need to compute the largest & singular values and
discard the remaining singular values/vectors. Computing
the k largest singular values could be done by sorting all
singular values in O(dlg d) time. It is possible to get O(d)
time by using the selection algorithm to get the k’th largest
singular value in O(d) time, then partition around the k’th
largest element.

Pseudo-Inverse. The pseudo-inverse of a rectangular ma-
trix M € R™*™ is usually computed by using the SVD
to compute the reciprocal of the singular values. The time
consumption is dominated by computing the SVD which,
if m > n, takes O(m?n) time. If the SVD is given it takes
O(n) time to compute the reciprocal of the singular values.

Condition Number. The condition number of a square
matrix is K = max; %;;/ min; ¥;;, normally computed by
first computing the SVD in O(d®) time. If the SVD is
already given it can be computed in O(d) time.

What if Neural Networks had SVDs?

8.2. Proof of Theorem 2.

d oL oL in

Theorem. Algorithm 2 computes < aX and 5=, ..., 5%
O(d*m) time with O(d/m + m) sequential matrix multipli-

cations.

Proof. Correctness. Our algorithm computes gradients
by the same equations as (Zhang et al., 2018), so in most
cases, we show correctness by clarifying how our algorithm
computes the same thing, albeit faster.

Consider g—f{ computed in Step 1:

oL oL oL

— == _prpr—

X~ BAgmir Y™ 9A;
oL

This is the same as that computed in (Zhang et al., 2018).

Consider Step 2. Both % and ;)ZLJ_ are computed as
done in (Zhang et al., 2018). Ejirl is computed using
Equation (5) similar to backpropagation without storing
activations, (Gomez et al., 2017), but using the fact that

HTH1

Time Complexity. In Step 1 the for loop performs d/m
matrix multiplications. Due to the WY decomposition
PT = (ZWYT) — 2YWT which can be multi-
plied on 2= € R™™ in O(dm) time since W, Y € R4x™,
The computation is repeated d/m times, and take a total of
O(d*m) time.

Step 2 line 14 performs two Householder matrix multiplica-
tions which take O(dm) time, see Equations (5) and (6). In
line 15 the gradient is computed by Equation (7), this sum
also takes O(dm) time to compute. Both computations on
line 14 and 15 are repeated d/m - m times, see line 10 and
line 13. Therefore, the total time is O(d?m).

Number of Sequential Operations. Step 1 performs
O(d/m) sequential matrix operations. Lines 13-16 of Step
2 perform O(m) sequential matrix multiplications. Since
each iteration of line 10-17 is run in parallel, the algorithm
performs no more than O(d/m + m) sequential matrix mul-
tiplications. O

Algorithm 3 Backwards Computation

1:

—_

_
R

—_
W

—_

R e AN A R i

_.
2

Input: Ay, ..., Ag/mi1, Prs oo Py and gTL.
Output: 7 aL and ; m‘ for all j where H; = I — 2

llv J||2

/] Step 1
for i = 1 to d/m do sequentially
o = Pl eq. (4. > O(dm?
end for
/] Step 2

for i = 1 to d/m do in parallel
Let 9L — 0L
3, 04;

To ease notation, let P, = ﬁm CH 1.
for j = 1tomdo
Compute AJH, BA , €Q8. (5) and (6). > O(dm

Compute _ usmg AJH, aA ,eq. (7). > O(d
end for
: end for
: return 9% = 8Af/€n+1 and gTLJ for all j.

)

)
m)

What if Neural Networks had SVDs?

8.3. Comparing Running Time

This subsection clarifies how the matrix exponential and
the Cayley map was used in combination with the SVD
technique from (Zhang et al., 2018). It also provides further
details on the exact computations we timed in the exper-
iment. These details were left out of the main article as
they require the introduction of some notation regarding a
reparameterization function.

Let V € R¥*9 be a weight matrix and let ¢ be a function
that reparameterizes V' so ¢(V') is orthogonal and we can
perform gradient descent wrt. V. The Householder de-
composition can be used to construct such a function ¢, by
letting the columns of V' be Householder vectors and ¢ (V')
be the product of the resulting Householder matrices.

There exist alternative ways of constructing ¢ which does
not rely on the Householder decomposition. For example,
the matrix exponential approach where ¢, (V) = €' and
the Cayley map approach where ¢c(V) = (I — V)(I +
V)~ (Casado, 2019).

We record the joint time it takes to compute ¢(V)X and the
gradients wrt. to V and X for a dummy input X € R¥*M,
To simplify the gradient computation of V', we use a dummy
gradient G € R¥M st. the gradient wrt. V is [%]TG’.
It might be useful to think of GG as the gradient that arises

by back-propagating through a Neural Network.

Both the dummy input and the dummy gradient have nor-
mally distributed entries X;;, G;; ~ N(0,1).

Implementation details. The parallel algorithm from
(Zhang et al., 2018) halted for larger values of d. The failing
code was not part of the main computation. This allowed us
to remove the failing code and still get a good estimate of
the running time of the parallel algorithm. We emphasize
that removing the corresponding code makes the parallel
algorithm faster. The experiments thus demonstrated that
our algorithm is faster than a lower bound on the running
time of the parallel algorithm.

What if Neural Networks had SVDs?

8.4. Using the SVD to Compute Matrix Operations

This section requires first reading Section 4.1 and Sec-
tion 4.2. Recall that we in Section 4.2 want to measure
the time it takes to compute the matrix operation, the for-
ward pass and the gradient computations. For example, with
matrix inversion, we want to compute the matrix opera-
tion ¥ 71, the forward pass VX 'UT X and the gradient
computations wrt V, X, U, X.

The time of the forward pass and gradient computations is
no more than two multiplications and two gradient compu-
tations, which is exactly two times what we measured in
Section 4.1. We re-used those measurements, and add the
time it takes to compute the matrix operation, e.g., X1,

Over Estimating the Time of Our Algorithm. The ma-
trix exponential and the Cayley map require one orthogonal
matrix instead of two, i.e., USUT instead of USV7T. The
WY decomposition then only needs to be computed for U
and not both U and V. By re-using the data we measure
the time of two orthogonal matrices, this thus estimates an
upper-bound of the real running time of our algorithm.

